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Introduction 

The Yaw of Repose angle βR is a very small, but gradually increasing, horizontally rightward, 

aircraft-type yaw-attitude bias or “side-slip” angle of the coning axis of a right-hand spinning 

bullet. The Yaw of Repose reverses sign and angles leftward for a left-hand spinning bullet.  

We discuss only right-hand spinning bullets here for clarity. It can be shown that for right-

hand twist, the yaw of repose lies to the right of the trajectory. Thus the bullet cones around 

with an average attitude offset to the right, leading to increasing side drift to the right caused 

by a small rightward net aerodynamic lift-force. As we shall show, the yaw of repose is 

caused by the downward curving of the trajectory due to gravity. The yaw of repose is 

constrained to lie in a plane perpendicular to the gravity gradient.  

For spin-stabilized bullets, this small rightward yaw attitude bias creates the well known 

rightward Spin Drift displacement. The small horizontally rightward yaw of repose angle 

causes a small rightward aerodynamic lift force which, in turn, causes a slowly increasing 
horizontal velocity of the bullet.  
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This effect occurs independently of the presence of surface wind of any force or from any 

direction. Bear in mind that the yaw of repose represents the horizontal yaw attitude of the 
bullet’s coning axis or the average yaw of the coning bullet itself.  

The acceleration of gravity acting upon the flat-fired bullet in free flight is the original cause 

of this small yaw-attitude bias angle. The downward curving of the trajectory due to gravity 
causes the airstream passing over the bullet to approach from below the nose of that bullet.  

 

FIGURE: Extreme TDC and BDC Positions of Coning Bullet 
 

This wind shift during each coning cycle causes an increased aerodynamic angle of attack 

which peaks as a maximum when the center of gravity (CG) of the bullet is at the Bottom 

Dead Center (BDC) position in each coning cycle where its nose is oriented maximally 
upward.  

Since the coning angle always exceeds this small change in the approaching airstream 

direction during each coning cycle, the aerodynamic angle of attack for a bullet at Top Dead 

Center (TDC) when the bullet’s nose is pointing maximally downward is at a minimum for 

that coning cycle, but that airstream continues to approach the bullet from below its axis of 

symmetry, even when the bullet is flying with its minimum possible coning angle.  

The airflow approaching the coning bullet from beneath its coning axis does produce 

overturning torque vectors also lying in the horizontal plane when the coning bullet is 

located in the horizontal plane of the coning axis. These moments continually enlarge the 

coning motion to allow the coning axis to reorient itself into the new apparent wind 

direction. It is only the vertical-direction modulations of overturning moments which must 
be considered here, and they change sign and go through zero in the plane of the coning axis.  
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These modulations of aerodynamic angle of attack during each coning cycle produce small 

differential rightward-acting increments in the aerodynamic overturning moment 

experienced by the bullet which are centered upon the BDC or TDC positions of the bullet 

during each (lower or upper) half coning cycle.  

In physics these recurring differential torques are termed “torque impulses,” and each one 

pushes the forward-pointing angular momentum vector of the right-hand spinning bullet 

horizontally rightward without affecting its spin-rate or magnitude. Each torque impulse is 
evaluated by integration over the time of its half-coning cycle.  

Both, the rotating overturning moment vector M due to the coning angle of attack α and its 

differential torque impulse vector ΔM inherently point positive rightward for the bullet at its 

BDC location. While the moment vector M itself points leftward at TDC, its negative 

differential torque vector ΔM is positive rightward as well at TDC. The differential torque is 

negative leftward at TDC because the aerodynamic angle of attack when the bullet is located 

there (or anywhere in the top half of the coning cycle) is less than the coning angle itself. The 

aerodynamic overturning moment is an odd function in the signed aerodynamic angle-of-
attack, but we do not need to use that concept here.  

Each rightward torque impulse ΔM tugs the forward-pointing angular momentum vector L 

slightly rightward along with the nose of the spinning bullet. The angular momentum vector 

L points forward along the spin-axis for a right-hand spinning bullet, as discussed here, and 

rearward for a left-hand spinning bullet. Each torque impulse ΔM is constrained to lie in the 

horizontal plane perpendicular to the gravity gradient because of the vector cross-product 

physical definition of torque.  

The 175.16-grain M118LR 30-caliber bullet used as an example here is experiencing its 88th 

coning half-cycle when it reaches its target distance of 1,000 yards. The reinforcing 

cumulative effect of these rightward torque impulses occurring twice per coning cycle is the 

mechanism by which the downward arcing of the trajectory due to gravity causes the slowly 
increasing rightward yaw of repose attitude bias of the flying bullet.  

The epicyclic motion of the spin-axis direction of a typical right-hand spinning rifle bullet is 

shown below for the first hundred yards, or so, of its flight. The gyroscopic stability Sg of this 
bullet at launch is about 1.33 
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General form of the yaw of repose, as described by BRL. 

p = − (
8Ix

d3CMaVw
4

) Vwx
dVw

dt
 

p = Yaw of repose vector 

CMa = Aerodynamic Overturning Moment Coefficient 

Ix = Axial Moment of Inertia 

 = Bullet Spin Rate 

 = Air Density 

d = Bullet Diameter 

Vw = Velocity with respect to the air. 

If the 3-dimensional mean trajectory of a rifle bullet in nearly horizontal flat firing is 

projected down onto a horizontal plane, the rightward deviation βT of its tangent direction 

from the firing azimuth essentially defines this yaw of repose angle βR throughout the flight, 

except for an even smaller horizontal dynamic tracking error angle εH as the trajectory 

curves to the right following (but lagging behind) the slightly larger yaw of repose angle βR:  

βR = βT + εH           (1) 

We will formulate a good approximation for βT as an aid in formulating βR accurately. The 

horizontal tracking error angle εH is inherently non-negative (εH≥0) for right-hand spinning 

bullets. The angle βT also defines the horizontal-plane orientation of a mean CG-centered 

coordinate system moving with the +V direction of the flying bullet, with respect to the 
firing-point-centered earth-fixed coordinate system in which the trajectory is measured.  

The yaw of repose has two effects on the trajectory of the projectile: 1) it produces a lateral 

lift-force that results in a the projectile drifting rightward (for a right-hand spinning 

projectile); and 2) it increases the total drag due by a small additional yaw-drag component.  

The additional lift is of a very small magnitude, but cumulatively causes the rightward 

horizontal spin-drift displacement of the bullet’s long-range trajectory. The accompanying 

additional yaw-drag component is an even smaller second-order term; thus, it is omitted. 

Any aerodynamic lift is always accompanied by some increase in aerodynamic drag.   
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Framework of the Analytical Solution 

The horizontal spin-drift SD which we observe in long-range shooting is due to a horizontally 

acting aerodynamic lift force attributable to the increasing yaw of repose attitude angle βR of 
the coning axis of the rightward-spinning rifle bullet.  

We will use the principles of linear aeroballistics in formulating the yaw of repose βR and its 

resulting spin-drift SD.  

Detailed analyses of PRODAS 6-DoF simulation runs show that in flat firing the magnitude of 

the spin-drift SD in any given simulated firing is, beyond the first 150 yards or so, very nearly 
equal to some invariant scale factor ScF of about 1.0 to 2.4 percent, more or less, times the 

bullet’s drop from the projected bore axis:  

SD(t) = -ScF*DROP(t)         (2) 

In other words, the horizontal spin-drift trajectory looks just like a small fraction ScF of the 

vertical trajectory rotated 90 degrees about the extended axis of the bore with each 

curvature ultimately caused by the same gravitational effect. The ratio of drift to drop rapidly 

approaches some particular ScF value for any rifle bullet asymptotically beyond the first 150 
yards of that bullet’s flight.  

Our task is to formulate the scale factor ScF so that it can be accurately evaluated for any 

given bullet type and firing conditions.  

Then using Eq. 2, we need only an accurate determination of the bullet’s drop from the bore 

axis at the target distance to calculate an accurate spin-drift at any long-range target.  

Existing 3-DoF “point mass” trajectory programs specialize in the accurate calculation of this 
bullet drop at the target distance in any firing conditions.  
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The Horizontal Tangent Angle 

The instantaneous tangent to the horizontal-plane projection of the mean trajectory forms 

the angle βT(t) to an X-axis which defines the launch azimuth of the fired bullet in that 

horizontal plane. The mean trajectory of the bullet is the 3-dimensional path of the mean CG 

location, and which path would have been followed by the CG of the bullet if it were not 

coning about that mean trajectory. The mean trajectory is the path of the mean CG of the 

coning bullet.  

This horizontal tangent angle βT(t) is always defined by the horizontal projection of the 

bullet’s mean velocity vector V(t), but these mean velocity components are not calculated in 

our available PRODAS reports. The bullet’s instantaneous cross-track velocity components 

are modulated by the helical coning motion of the CG of the bullet in flight.  

Another important use for this horizontal tangent angle function βT(t) in ballistics is in 

plotting the horizontal yaw-attitude of the spin-axis of the bullet in the “wind axes” pitch-

versus-yaw plots long used by ballisticians. 

Just as the pitch coordinate data for the bullet’s spin-axis direction is corrected by 

subtracting out the total change since launch ΔΦTotal(t) = Φ(t) - Φ(0) in the vertical-plane 

mean flight path angle Φ before plotting the pitch data for a 6-DoF simulated flight, the total 

change since launch in the mean trajectory’s horizontal yaw-angle βT(t) should also be 

subtracted out before plotting of the bullet’s yaw attitude data -- in the interest of logical 

consistency. However, this correction is not being done in contemporary aeroballistics. The 

resulting logical inconsistency stems from not fully understanding the coning motion of the 

flying bullet. The error persists because the angles involved are usually quite small.  

With this change being made, the origin of the wind axes plots could truly be defined 

(horizontally as well as vertically) as the instantaneous +V direction of the bullet’s mean 
trajectory. Only the horizontal dynamic tracking error angle εH(t) would remain in the 

plotted yaw-attitude values instead of the entire yaw-of-repose angle βR(t). A similar small 

positive upward vertical-direction dynamic tracking error angle εV(t) is currently shown in 
these wind-axes plots of 6-DoF simulation results.  

Because the scale factor ScF in Eq. 2 is essentially invariant over time t and distance x(t) at 

long ranges, we can evaluate the trajectory’s horizontal-plane tangent angle βT(t) directly 

from the bullet’s vertical-plane DROP data in suitable distance units at any time t during its 
flight, by utilizing the small angle approximation that Tan(α) ≈ α in radians:  

βT(t) = dSD/dx = -ScF*[d(DROP)/dx ]= -ScF*[Φ(t) – Φ(0)] = -ScF*ΔΦ(t)             (3) 

The x-derivative of DROP(t) can easily be seen to equal the Mean Flight Path Angle Φ(t) in 

horizontal firing when Φ(0)=0, but it is clearly also Φ(t) – Φ(0) when Φ(0)≠0, whenever 

Φ(0) is small as in the flat-firing cases being considered here.  
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If the scale factor ScF is known, this expression allows calculation of the bullet’s horizontal 

tangent angle in flat firing from either the ratio of its vertical drop rate to its forward velocity 

at any point during its flight or from the total change ΔΦ(t) in the vertical-plane mean flight 

path angle Φ since launch.  

The “epicyclic swerve” modulation of the bullet’s DROP(t) data rapidly fades to an 

insignificant fraction of the bullet’s total DROP distance from the axis of the bore as the flight 

progresses. 

The differential DROP-rate and remaining forward velocity V(t) are readily found from any 

simulated flight data. Calculation of the invariant scale factor ScF for any particular flight 

trajectory is discussed later in this paper.  

Alternatively, one could evaluate βT(t) directly in the horizontal plane. As the bullet drifts 

horizontally due solely to spin-drift SD(t), the intersection point with the X-axis of the 

tangent to the bullet’s mean trajectory in the horizontal plane moves forward in the +X 

direction, but at a faster velocity than the forward velocity V(t) of the bullet itself. This 

intersection point starts about 150 yards later, but never quite catches up with the X-

coordinate of the bullet in flat firing.  

If we assume a continually increasing curvature of the horizontal trajectory so that this 

velocity ratio varies exponentially with range X(t), we can estimate βT, the dominant portion 

of βR, as:  

βT ≈ TAN(βT)  = SD(t)/{X(t)*0.825*exp[-0.925*X(t)/X(max)]}         (4) 

This hand-fitted estimator function agrees quite well with βT(t) angular values extracted 

from available trajectories generated by PRODAS 6-DoF simulations for the 1000-yard flight 

of our particular long-range rifle bullet by ratioing an extracted rightward VR(t) to V(t) for 

each millisecond of the PRODAS trajectory reports.  

The horizontally rightward velocity component data VR(t) is extracted by applying a 

smoothing difference operator to the PRODAS “no wind, no Coriolis” drift data converted 
into linear units. 

Comparing the two βT functions for each millisecond over the 1.6923-second simulated flight 

time yields a mean difference of 1.12 micro-radians with a population standard deviation of 
0.0514 milliradians.  

Extraction of the small rightward horizontal velocity VR from the trajectory drift data is 

complicated by the superimposed epicyclic swerving of the CG of the bullet which accounts 

for most of the variance between these two functions.  
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The two approaches in Eq. 3 and Eq. 4 for evaluating βT(t) agree reasonably closely for 

PRODAS data as the epicyclic swerve modulations in SD(t) and DROP(t) dynamically damp 
out and fade into insignificance with ongoing flight time t.  

We formulate these approximations for βT(t) so that they can be used as reasonableness 

checks on calculations of the yaw of repose βR(t) which is not itself reported by PRODAS.  

We will eventually need an accurate formulation for βR(t) in order to calculate the scale 

factor ScF and thence the spin-drift SD(t) for other rifle bullet trajectories without relying 

upon 6-DoF simulation data.  
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PRODAS Simulated Flight Data 

In this paper we will use as our example bullet the US Army’s 30-caliber 175.16-grain 

“M118LR” bullet as was loaded in their M118LR Special Ball (7.62x51 mm NATO) long-range 
sniper and match ammunition in 2011.  

We do this because we have several PRODAS 6-DoF simulation runs on hand from 2011 for 

this 7.62 mm NATO ammunition, reporting the linear ballistic results (including spin-drift) 
for each millisecond of its 1.6923-second total simulated flight time to 1000 yards.  

The bullet weight actually used in these PRODAS runs is 175.16 grains. The simulated firing 

conditions are 1) flat firing, 2) standard sea-level ICAO atmosphere, 3) no wind, 4) no Coliolis 

effect calculated, 5) muzzle velocity of 2600.07 feet per second, and 6) barrel twist is right-
handed at 11.5 inches per turn.  

The “no-wind” and “no-Coliolis” conditions assure that the rightward spin-drift SD is the only 

secular horizontal “bullet drift” being computed by PRODAS. 

However, the PRODAS reported drift and drop data necessarily include the oscillating 

horizontal and vertical components of the bullet’s helical coning motion about its mean 

trajectory throughout its simulated flight. We also have PRODAS runs available for this same 

bullet fired through constant left and right 10 MPH crosswinds as well as left-hand twist runs 
in each of the three constant wind conditions.  
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Yaw of Repose 

We will show that in flat firing the continual downward arcing of the flight path angle Φ due 

to gravity causes repeated rightward differential aerodynamic torque impulses ΔM centered 

about the extreme top-dead-center (TDC) and bottom-dead-center (BDC) positions of the 

CG of the bullet in its coning motion.  

These double-rate yaw attitude-changing horizontal torque impulses ΔM cause the forward-

pointing angular momentum vector L of the right-hand spinning bullet to shift horizontally 

evermore rightward during its flight. In light of Coning Theory, we should more precisely say 

the bullet’s coning axis drifts horizontally rightward in its yaw attitude throughout the flight.  

Ballisticians term this accumulating yaw-attitude bias the “yaw of repose” angle βR of the 

flying bullet and classically formulate its horizontal component from calculus as [Eq.10.83 in 

McCoy’s MEB]:  

 βR = P*G/M           (5) 

This expression is the horizontal part of the particular solution for the differential Equations 

of Motion which determine each trajectory in terms of the classic aeroballistic auxiliary 
parameters:  

P = (Ix/Iy)*p*d/V =  (ω1 + ω2)*d/V       (6) 

G = g*d*Cos(Φ)/V2 ≈ g*d/V2        (7) 

M = (m*d2/Iy)*[ρ*S*d/(2*m)]*CMα = (ω1 + ω2)*ω2*d2/V2     (8) 

after converting each classic auxiliary parameter from dimensionless (canonical) arc-length-

rates into the time-rate units used in our physical analyses of flat-firing a spin-stabilized rifle 

bullet.  

The change-of-variables in Eq. 6 uses one of the gyroscopic relationships from Tri-Cyclic 

Theory [Harold Vaughn of Sandia Labs and Dr. John D. Nicolaides, 1953] that:  

(Ix/Iy)*p = (Ix/Iy)*ω = ω1 + ω2 = ω2*(R + 1)                   (9) 

where R = ω1/ω2 is called the “stability ratio” which is perfectly 1:1 corelated with the 

gyroscopic stability Sg = (R + 1)2/(4*R).   

McCoy defines the spin-rate p of the bullet as used here to be a circular frequency given in 

radians per second. The bullet’s spin-rate p is sometimes given elsewhere in aeroballistics in 

units of revolutions per second (or hertz), and is sometimes given in radians per foot of bullet 
travel, or even in radians per caliber d of bullet travel.  
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To avoid this confusion we use the more conventional symbol ω here for the circular 

frequency of the spin-rate of the bullet given in radians per second. We also use the symbol f 
for rotation rates as frequencies in revolutions per second or hertz.  

The change of variables in Eq. 8 uses the fundamental magnitude relationship from Coning 

Theory that:  

(ρ*S*V2/2)*d*CMα = L*ω2 = (Ix*ω)*ω2        (10) 

as well as the Tri-Cyclic relation in Eq. 9 again. Note that this Coning Theory relationship 

implies that the slow-mode coning rate ω2 in radians per second is always given by 
(M/P)*V/d in terms of the canonical aeroballistic auxiliary parameters M and P.  

With these changes of variables, the classic formulation for the yaw of repose angle βR 

reduces to:  

βR = g/[ω2(t)*V(t)] = g/[2π*f2(t)*V(t)]       (11) 

While this formulation for βR is classic, it does not inherently yield zero at t = 0, and it is 

about a factor of π too small at long ranges when compared to βT as formulated above [Eq. 1 
and Eq. 3].  

Let us say the mean flight path angle Φ of the bullet’s trajectory changes downward by a 

small decrement ΔΦ due solely to the pull of gravity (as with a vacuum trajectory) during 

one-half of the period T2 of a particular coning cycle. As a continuous variable in flight time 

t, this angular decrement ΔΦ(t) = 0.0 at t = 0 by definition.  

In flat firing, the small decrement ΔΦ in the nearly horizontal flight path angle Φ(t) during 

the time interval T2/2 of a particular half-coning cycle can be expressed as:  

ΔΦ(t) ≈ TAN(ΔΦ) = -(g*T2)/[2*V(t)] = -g/[2*f2(t)*V(t)] = -π*g/[ω2(t)*V(t)]  (12) 

where f2(t) is the instantaneous coning rate, or gyroscopic precession rate, of the bullet given 

in revolutions per second, or hertz. [Here we are ignoring the significant cross-bore-axis 

(upward) component of the real bullet’s ballistic drag force FD in interest of formulating a 

simple SD estimator. This oversimplification will be explained and dealt with later.]  

Comparing our version of the classic formulation for the steady-state yaw of repose βR(t) in 

Eq. 11 with the change in flight path angle ΔΦ(t) due solely to gravity per half-coning cycle 

above, we note that:  

βR(t) = (-1/π)*ΔΦ(t)           (13) 

Thus, our formulation in Eq. 12 above for ΔΦ(t), the change in flight path angle Φ per half-

coning cycle T2/2 which does inherently equal zero at t = 0, actually looks like a more 
suitable formulation for βR(t) than does the classic form.  
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We will now investigate the aerodynamic and gyroscopic causes of βR(t) so that we can 

formulate its value at any time t during the flight of any rifle bullet.  

At each extreme vertical location, TDC and BDC, the coning bullet experiences a peak rate of 

differential change in its aerodynamic overturning moment vector M due to this differential 

change ΔΦ in its vertical-direction (upward airflow) aerodynamic angle-of-attack. Each of 

these two differential torque impulse vectors ΔM points horizontally rightward as seen from 

behind the right-hand spinning bullet.  

Here these two differential torque impulse vectors ΔM are to be evaluated by integrating the 

differential torque over each half (upper or lower) of the coning period T2, giving them units 

of torque multiplied by time which correspond with the units of angular momentum.  

Owing to the increased aerodynamic angle-of-attack of the apparent wind experienced by 

the bullet at its BDC position, the differential torque impulse ΔM at BDC is inherently positive 

rightward, temporarily increasing the overturning moment M acting upon the bullet at this 

BDC location in its coning motion.  

While the overturning moment vector M itself points leftward at the TDC position of the 

bullet, the differential torque impulse vector ΔM is inherently negative due to the reduced 

aerodynamic angle-of-attack experienced by the coning bullet at that upper location, and so 
the differential torque impulse vector ΔM itself points positive rightward, once again, at TDC.  

Thus, the alternating sequences of TDC and BDC differential torque impulses are mutually 
reinforcing throughout the bullet’s flight.  

Recall that in Coning Theory the spin-axis of the bullet is pointing maximally upward when 

the CG of the bullet is at its BDC position in any coning cycle; i.e., its aerodynamic pitch 
attitude is a relative maximum during that coning cycle.  

As formulated in linear aeroballistics, the instantaneous magnitude {M} of the overturning 
moment M at time t is:  

{M} = q*S*d*Sin[α(t)]*CMα   

Where 

q = (ρ/2)*V2 = Dynamic Pressure in lbf/square foot. 

ρ = Density of the atmosphere = 0.0764742 lbm/cubic foot for the standard sea-level ICAO 

atmosphere used here. This value of the density ρ must be divided by the acceleration of 

gravity g = 32.174 feet per second per second to convert its units into proper density units, 
mass (slugs) per cubic foot.  

V = Airspeed of the bullet in feet/second.  
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S = Reference (frontal) area of the bullet at the base of its ogive in square feet = (π/4)*d2. 

d = Diameter of the bullet in feet.  

α(t) = Coning angle (and aerodynamic angle-of-attack) of the bullet in radians at any time t 

during its flight.  

CMα = Dimensionless overturning moment coefficient in linear aeroballistics theory. 

Here we are ignoring the fast-mode gyroscopic nutation ω1(t) of the bullet’s spin-axis for 

several reasons: 1) It does not normally move the CG of the bullet by any measurable amount, 

2) Its aeroballistic effects tend to average out to zero rather rapidly, and 3) It rapidly damps 

to insignificance for most rifle bullets after any flight disturbance.  

As the flat-firing trajectory of the coning bullet, flying essentially horizontally near the X-axis 

(with Φ ≈ 0.0 and with its coning axis aligned into the approaching windstream), arcs 

downward due to gravity, the aerodynamic angle-of-attack α(t) increases by the magnitude 

of ΔΦ at its BDC location in this coning cycle. 

The cosines of small coning angles α(t)<5.7 degrees, the flight path angle Φ,  and the small 

change in flight path angle ΔΦ all remain essentially equal 1.00. From trigonometry, the peak 

magnitude {ΔM}PEAK of this differential overturning torque ΔM with the bullet at its BDC 
location can be expressed as:  

Sin(α + ΔΦ) = Sin(α)*Cos(ΔΦ) + Cos(α)*Sin(ΔΦ) ≈ Sin(α) + Sin(ΔΦ)  

M + {ΔM}PEAK = q*S*d*Sin(α + ΔΦ)*CMα ≈ M + q*S*d*Sin(ΔΦ)*CMα 

{ΔM}PEAK = q*S*d*Sin(ΔΦ)*CMα        (14) 

 This expression can also be well approximated as:  

{ΔM}PEAK = q*S*d*(ΔΦ)*CMα        (15) 

The instantaneous vertical-direction aerodynamic angle-of-attack is actually the vector sum 

of three small angles in complex wind-axes coordinates (ignoring the fast-mode ω1 motion): 

1. Vertical component of the slow-mode coning angle, α(t)*Cos(ω2*t + ξ0)  

2. Downward change in flight path angle ΔΦ, and 

3. Very small vertical-direction tracking error angle εV (upward in wind-axes plots). This 

vertical-direction tracking error angle εV is termed the “pitch-of-repose” by McCoy.  

The primary overturning moment M is due to (1.) the coning angle-of-attack α(t). This 

rotating torque vector M produces the slow-mode circular coning motion of the CG of the 

bullet at the coning rate ω2(t) of the bullet as a gyroscopic precession of the bullet’s spin-
axis.  
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Examination of several different PRODAS runs shows that even for a dynamically stable 

bullet with any early coning motion fully damped down, α(t) always exceeds ΔΦ by some 
margin all the way to maximum supersonic range and beyond.  

From Coning Theory, the vertical component of the complex coning angle α(t) is the “pitch 

angle” φ(t) given by the real part of the complex α(t), again neglecting the fast-mode motion:  

φ(t) = Re[α(t)] = {α(t)}*Cos(ω2*t + ξ0)        (16) 

Whenever {α(t)}>>ΔΦ, only the portion of φ(t) equal in magnitude to ΔΦ produces the 

differential overturning moment impulse ΔM which drives the spin-axis of the bullet 

rightward giving rise to the bullet’s Yaw of Repose angle βR, and the overturning moment 

impulses at BDC and TDC can be modeled as having the same form.  

The excess of φ(t) over ΔΦ goes toward enlarging the coning angle α(t), counteracting any 

frictional aerodynamic damping of that slow-mode coning motion of the bullet.  

The instantaneous differential overturning moment {ΔM} is then due to the vertical-
direction differential aerodynamic angle-of-attack ΔΦ(t)*Cos(ω2*t + ξ0). 

This modulation at the coning-rate ω2 looks like a full-wave-rectified sine wave over each 

coning cycle. The time-average over each quarter wave is just 2/π times the peak value. 

The average value of ΔΦ itself over each half-coning cycle is just ΔΦ/2 because the flight path 

angle Φ varies almost linearly over the small interval T2/2. Averaged over the top or bottom 

one-half of a coning cycle, the average effective angle-of-attack is then (2/π)*ΔΦ/2 = ΔΦ/π.   

The vector sum of (2) ΔΦ and (3) εV varies only gradually with ongoing time-of-flight t. The 

magnitudes of these two small angles sum to an average vertical-direction aerodynamic 

angle-of-attack which drives the coning-axis direction continually downward according to 

Coning Theory, dynamically tracking (but lagging behind) the downward-curving trajectory.  

The time-integrated torque impulse ΔM centered at TDC or BDC must equal the differential 

torque due to the time-average ΔΦ/π of the modulated aerodynamic angle-of-attack 

multiplied by the total time interval T2/2 for each half-coning cycle. The interval T2 increases 
gradually as the coning rate ω2(t) slows throughout the flight.  

The effective differential torque impulse ΔM integrated over a particular half-coning cycle 
thus becomes:  

ΔM = (T2/2)*q*S*d*(ΔΦ/π)*CMα        (17) 

Substituting the unsigned magnitude of the first expression for ΔΦ from Eq. 12 yields:  

ΔM = (1/π)*g*(T2/2)2 *q*S*d*CMα/V(t)       (18) 
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This differential torque impulse ΔM has units of lbf-feet-seconds which can be converted into 

slug-feet squared per second, a proper set of units for angular momentum.   

The right-hand spinning bullet alters its pointing direction rightward in gyroscopic reaction 

to each of these two differential torque impulses ΔM during each coning cycle. However, it 

does so in an unusual way.  

When a constant-magnitude, rotating overturning moment vector M is applied to a spinning 

gyroscope, its spin-axis direction soon begins moving in precession and nutation in reaction 

to that steadily rotating torque vector. 

However, the first motion of its spin-axis is always in the direction of the eccentric force 

producing the overturning moment M while those epicyclic motions are getting started. 

For the spinning bullet, the eccentric force is the total aerodynamic force F, a line vector 

acting through the aerodynamic center-of-pressure CP of the bullet at any instant during its 

flight. For spin-stabilized, rotationally symmetric rifle bullets, the CP is nearly always located 
forward of the CG along the spin-axis of the bullet.  

In response to each small torque impulse ΔM, the spin-axis of our bullet moves initially 

rightward, but each impulse ceases well before any vertically upward or downward 

movement of the spin-axis can become established.  

When the torque impulse vector ΔM is expressed in the same units as the angular momentum 

vector L of the spinning bullet, having physical dimensions of mass times length squared over 

time, their direct vector sum defines the resulting angular momentum L of the spinning 

bullet after the torque impulse has been applied.  

For a right-hand spinning bullet the angular momentum vector L points forward along its 

spin-axis. Here, since ΔM is always acting perpendicularly to L, the direction of the angular 

momentum vector L is shifted rightward by an incremental angular amount (in radians), 
which we term ΔβR, but its magnitude remains unchanged.  

Of course, the nose of the right-hand spinning rifle bullet in stable supersonic flight always 

points in the direction of its angular momentum vector L.  

The incremental increase ΔβR in the yaw of repose angle βR during each half coning cycle is 
thus:  

ΔβR ≈ Tan(ΔβR) = {ΔM}/{L} = (1/π)*g*(T2/2)2*q*S*d*CMα/[L*V(t)]    (19) 

Recalling Eq. 22 from the Coning Theory paper, we note that the right-hand side of Eq. 19 

above contains the fundamental expression from Coning Theory for determining the 

magnitude of the circular coning rate ω2(t) for a spin-stabilized bullet coning at non-zero 
angles of attack α:  
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ω2 = q*S*d*CMα/L      (α, L ≠0)  

Due to the acceleration of gravity, the coning angle α(t) cannot be zero in flat firing except 

perhaps very briefly at t = 0, where this magnitude relationship still holds true.  

After this change of variables,  

ΔβR = (1/π)*g*(T22)*ω2(t)/[4*V(t)]        (20) 

This change of variables is critically important in formulating an analytical calculation of βR 

because it simultaneously eliminates from the formulation both the overturning moment 

coefficient CMα and the angular momentum L of the bullet, each of which is difficult to 

calculate for a new bullet. The coning rate ω2(t) is more readily obtainable from Tri-Cyclic 
Theory. 

Also recall that by definition T22 = 1/(f2)2 = 4π2/ω22. After this substitution we have:  

ΔβR = π*g*/[ω2(t)*V(t)] = g/[2*f2(t)*V(t)] = g*T2/[2*V(t)] = -ΔΦ    (21) 

While this expression is dimensionless, the increment in the yaw of repose angle ΔβR for each 

half-coning-cycle T2/2 is calculated here in radians. The proper algebraic sign depends upon 

coordinate system conventions and the sense of the bullet’s spin-rate.  

In linear aeroballistics theory, the instantaneous aerodynamic lift-force driving the spin-drift 

SD of the bullet’s CG horizontally rightward from the X-axis is linearly proportional to the 
aerodynamic angle-of-attack for the very small yaw of repose angle βR.  

Thus, the linear dependence of ΔβR upon ΔΦ shown in Eq. 21 explains the remarkable 

similarity in shape of the horizontal-plane and vertical-plane projections of the bullet’s “no 
wind, no Coriolis” mean trajectory in 3-space.  

We could have arrived at the result shown in Eq. 21 more directly by assuming unrealistically 

that the flying bullet was not coning, but simply spinning about its coning axis direction with 

a zero coning angle α, or by assuming that a non-zero coning angle α does not matter. But 
then we would have to validate either of those assumptions as we have done above.  

For minimum coning angle flight, when α(t)≳δ≈ΔΦ as becomes the case eventually in most 

“constant wind” 6-DoF simulations, the average torque impulses ΔM are no longer precisely 

symmetrically equal at BDC and TDC. In fact, ΔM(BDC)≳ΔM(TDC), and their combined 

average effect would be slightly smaller (by about 5 percent) than these estimates here 

yielding a maximal yaw of repose angle.  

The yaw of repose angle βR(t) can be found by summing the increments ΔβR divided by T2/2 

for each half coning cycle which has occurred from t = 0 to time t, starting with βR(0) equal 

zero. 
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Using the data from “no wind, no Coriolis” PRODAS reports for this 30-caliber bullet, yields 

βR(1.430 sec) = 0.67208 milliradians, which exceeds our fitted value of βT(1.430 sec) = 
0.61019 mrad by 10.14 percent.  

We term this difference, βR(t) – βT(t), the horizontal tracking error angle εH(t). We are 

comparing these angles here at t = 1.430 seconds after launch when this M118LR bullet has 

slowed to Mach 1.20 or 1340 feet per second at 888.5 yards downrange in these simulated 

firing conditions.  

Using the PRODAS-calculated velocity and coning-rate data, our adjusted version of the 

classic formulation of the yaw of repose yields βR(1.430 sec) = π*P*G/M = 0.70633 

milliradians, which exceeds our fitted value of βT(1.430 sec) = 0.61019 mrad by 15.76 percent 

for the horizontal dynamic tracking error angle εH. We believe this adjusted classic 

formulation for βR better matches the case for a significantly coning bullet than for this 

particular minimally coning PRODAS trajectory.  

 

 

Projection of the Mean Trajectory onto the Horizontal Plane.  
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Estimating the Yaw of Repose 

In the absence of having 6-DoF simulation data available, we could approximate the yaw of 

repose angle βR(t) by assigning readily integrable (in closed form) continuous functions of 

time t to represent the variables ω2(t) and V(t) in Eq. 21 so that we could then approximate 

this summing operation by performing the definite integration of ΔβR(t) over time from t = 
0 to time t and dividing the integrated result by the total time interval t:  

 βR(t) = (2π*g/t)∫[ω2(t)*V(t)]-1 dt        (22) 

Here the extra factor of 2 in this expression for βR(t) in Eq. 22 versus the expression for ΔβR(t) 

in Eq. 21 is due to integrating ΔΦ(t) continuously rather than using its average value ΔΦ/2 

over each half-coning cycle.  

Note that the size of the yaw of repose angle βR(t) whenever α(t)>>ΔΦ depends only on the 

velocity V(t) and coning rate ω2(t) of the bullet as functions of time. In particular, βR(t) in 

this formulation is independent of the coning angle α(t) itself in this analysis.  

Since the spin-drift displacement SD(t) is caused directly by this yaw of repose angle βR(t) 

as an aerodynamic lift effect, evaluation of the spin-drift SD(t) does not require detailed 

knowledge of the bullet’s coning angle α(t). This independence of βR(t) is significant because 

the coning angle α(t) is a free variable in Coning Theory and is thus difficult to evaluate 
analytically except in special cases.  

If we find the values of ω2(t) and V(t) at t = 0 and at a much later flight time t = T, and we 

assume for approximation purposes that each function decays exponentially with time t, 
then the definite integral for βR(t) can be expressed as:  

βR(t) = {2π*g/[ω2(0)*V(0)*T]} ∫exp[-(kω + kV)*t/T] dt       (23) 

with  

kω = ln[(ω2(T)/ω2(0)]  

ω2(t) = ω2(0)*exp[kω*t/T]         (24) 

The decay in bullet spin-rate dω/dt is due to skin friction, a torque ΓS about the x-axis of the 

bullet, which opposes and slows its spin-rate ω:  

ΓS = dL/dt = d/dt[Ix*ω] = Ix*dω/dt.  

This skin friction torque ΓS itself is proportional to the circumference of the bullet π*d.  

The second moment of inertia of the spinning bullet about its spin-axis is given by  

Ix = m*d2 *kx2  



20 / 51 Calculating Yaw of Repose and Spin Drift for Firing Point Conditions – Boatright & Ruiz – rev. 
September/2018  

 

 

So, the time rate of change in spin-rate dω/dt is inversely proportional to the caliber d-1 of 

the bullet.  

The decay in the spin-rate ω(t) for any modern rifle bullet in flight is closely approximated 
by the exponential expression: 

ω(t) ≈ ω(0)*exp[-(0.0321/d)*t]    (with d = caliber in inches)  

The indicated spin decay-rate coefficient -0.0321/d closely matches the spin-rates shown 
throughout the PRODAS runs for the M118LR bullet having 0.308-inch diameter d.   

From the Tri-Cyclic Theory, we can evaluate the coning rate ω2(t) as 

ω2(t) = (Ix/Iy)*ω(t)/[R(t) + 1] 

ω2(T)/ω2(0) = [ω(T)/ω(0)]*{[R(0) +1]/[R(T) + 1]}  

kω = ln[ω2(T)/ω2(0)] = [-(0.0321/d)*T] + ln{[R(0) +1]/[R(T) + 1]}  

kω ≈ [-(0.0321/d)*T] +[-0.585*T] = -(0.585 + 0.0321/d)*T 

This approximation provides a better than 5-percent fit to the coning rates ω2(t) calculated 

in PRODAS for this M118LR example bullet for each millisecond of its flight to 1000 yards, 
so we shall use this approximation as well for other rifle bullets pending further analysis.  

We also approximate the decay-rate in bullet velocity V(t) as exponential in time t:  

kV = ln[V(T)/V(0)]   

V(t) ≈ V(0)*exp[kV*t/T]          (25) 

Here we are using t/T as a dimensionless canonical variable in the exponential decay 

expressions and as a dummy variable in the (summing) integration.  

After the definite integration from t = 0 to t =T, the expression for βR(t) is:  

βR(t) = {-2π*g/[ω2(0)*V(0)*(kω + kV)]}*{exp[-(kω + kV)*t/T] - 1}    (26) 

Note that βR(0) = 0.00 as we require here.  

Our “no wind anywhere” PRODAS runs for this M118LR bullet show that V(t) slows from an 

initial velocity of 2600.07 feet per second to 1340 FPS (Mach 1.20) at 888.5 yards downrange 

with a time-of-flight (T) of 1.430 seconds, and that the coning rate ω2(t) of the bullet slows 

from 2π*45.57 radians per second to 2π*17.00 radians per second over this same interval T.  

The yaw of repose angle βR(T) at T = 1.430 seconds, and at 888.5 yards downrange, would 
then be calculated as:  

kω ≈ -(0.585 + 0.0321/d)*T = -0.98559 
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kV = ln[V(T)/V(0)] = -0.66328  

βR(1.430 sec) = [1.6469x10-4]*[4.2011] = 0.69186 mrad = 0.039641 degrees  (27) 

While PRODAS does not report βR, this small 0.040-degree angle is not unreasonable for this 

bullet at 888.5 yards downrange.  

A smoothed value of 0.5040 milliradians (or 0.02888 degrees) can be directly calculated for 

the tangent angle βT at 888.5 yards into a “no wind” PRODAS simulated flight by ratioing an 

extracted horizontally rightward velocity VR(t) to the forward velocity V(t) of the bullet at  

t=1.430 seconds. 

However, this velocity ratio is very sensitive to the ongoing epicyclic swerving motion 

included in the PRODAS Drift reports, and its smoothed value probably should be somewhat 

larger here at t = 1.430 seconds.  

Our fitted algorithm, mentioned above, for estimating the tangent angle βT at 888.5 yards 

yields 0.61019 milliradians or 0.034961 degrees. This would indicate a reasonable horizontal 

tracking error angle εH of 0.08167 milliradians, or 13.38 percent of βT at that point in the 

flight.  

This closed-form integration yields a value of βR about midway between our numerically-

integrated value and the adjusted classic value of βR as calculated from the same PRODAS 

data at t = T. 

We shall use this closed-form algorithm (Eq. 26) for estimating the yaw of repose angle βR(t) 

without relying upon any 6-DoF simulation data in formulating the spin-drift SD(t) of any 

rifle bullet at long ranges.  

Think of these incremental yaw-attitude changes as occurring twice per coning cycle at the 

TDC and BDC positions of the coning bullet throughout the flight. 

The double-coning-rate sequence of small torque impulses ΔM produces a reinforcing chain 

of these “first motions” which gradually shifts the coning-axis direction of the spinning bullet 

evermore rightward.  

The initial yaw of repose angle at bullet launch βR(0) must be zero by definition.  

These calculations serve to validate our analysis of the gyroscopic and aerodynamic causes 

of the yaw of repose.   
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Analysis of the Spin Drift 

The horizontally rightward spin-drift SD(t) of the trajectory is caused by a net horizontal 

aerodynamic lift-force attributable to this small, but ever increasing, rightward yaw of 
repose angular bias βR(t) in the yaw-attitude of the coning-axis of the spinning bullet.  

The pointing direction of the bullet’s coning axis quickly tracks each of these small changes 

in the approaching apparent wind direction within one half of a coning cycle, just as with any 
other type of wind change.  

As the horizontal projection of the mean trajectory traced by the mean CG of the bullet 

gradually accelerates rightward with this spin-drift SD(t), its tangent +V direction defining 

the origin of wind-axes plots drifts slowly rightward also, following (but dynamically 
lagging) the increasing yaw of repose attitude angle βR(t) of the bullet.  

We formulated this tangent angle βT(t) earlier. Logically, only the horizontal tracking error 

angle εH(t) = βR(t) – βT(t) ≥ 0 should appear in these wind-axes plots in place of βR(t), itself.  

In formulating the effective net (time-averaged) aerodynamic lift-force accelerating the CG 

of the coning bullet rightward, we must consider the coning modulation of the aerodynamic 
effect as the CG of the bullet moves throughout its circular coning cycle. 

Here the modulation is horizontally left-to-right, and the effect being modulated is an 

aerodynamic lift force.  

However, as we saw above for the modulation of the overturning moment, for the uniformly 

coning rifle bullet, analysis of the modulation of this lift force can be greatly simplified by 

making use of Coning Theory. We can express the average effective aerodynamic lift-force 

on the coning bullet arising from the yaw of repose angle βR(t) as if the bullet were not 

coning, but simply flying with the spin-axis always aligned with the attitude of its coning axis 

[α(t) = 0]. After all, it is the attitude of that coning axis which properly defines this yaw of 
repose angle βR(t).  

The actual average aerodynamic angle of attack in a coordinate system moving with, and 

oriented with the mean trajectory of the coning bullet, is just the tracking error angle εH(t). 

The lift-force attributable to this εH(t) angle of attack keeps increasing the rightward 

curvature of the mean trajectory. In earth-fixed coordinates, not oriented to βT(t) with the 

yawing bullet, the average horizontal angle of attack driving the mean trajectory away from 

the original firing azimuth, the X-axis, is εH(t)+βT(t) = βR(t).  

The magnitude of the small net rightward aerodynamic lift force {FL}R attributable to the 

rightward yaw attitude bias βR(t) of the coning axis is given in linear aeroballistics as:  

{FL}R = q*S*{CLβ*Sin[βT(t) + εH(t)] – CD*Sin[βT(t)]}  

Or 
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{FL}R  ≈ q(t)*S*CLβ(t)*βR(t) – q(t)*S*CD(t)*βT(t)      (29) 

The small rightward aerodynamic lift force acting horizontally on the bullet is actually 

counteracted partially by an even smaller cross-bore component of the bullet’s significant 
aerodynamic drag force FD given by q*S*CD*βT(t).  

Here the coefficient of lift CLβ(t) and coefficient of drag CD(t) are evaluated for the very small 

aerodynamic angle-of-attack βR(t). However, they still vary with the Mach-speed of the 

slowing bullet. The dynamic pressure q(t) also reduces with the square of its airspeed V(t) 

as the bullet slows.  

This small rightward horizontal force {FL}R acting on a bullet of mass m for one half the 

period T2 of each coning cycle produces a rightward horizontal bullet velocity increment ΔVR 
given here in feet per second per half-coning cycle as:  

ΔVR = {FL}R*T2/(2*m) = {FL}R/[2*m*f2(t)]  =  (π/m)*{FL}R/ω2(t)   (30) 

Where m is the mass of the bullet expressed in slugs. Here, m = 175.16/(7000*g) = 

0.00077774 slugs. We are using g = 32.174 feet per second per second for the standard 

effective “acceleration of gravity” on or near the surface of our rotating earth.  

These rightward velocity increments ΔVR accumulate (sum) from zero at t = 0 for each half 
coning cycle which occurs from launch to time t to form the horizontally rightward velocity 

VR(t) of the CG of the bullet which is caused aerodynamically by the yaw of repose angle βR(t).  

The incremental rightward horizontal spin-drift of the bullet, ΔSD in feet, during one 

particular half-coning cycle T2/2 is then:  

ΔSD(t) = VR(t)*T2/2 =  VR(t)/[2*f2(t)] =  π*VR(t)/ω2(t)     (31) 

The horizontal spin-drift SD(t) at time t is then found by summing these incremental 

displacements ΔSD(t) for each half coning cycle starting with zero at t = 0. Our subject 

M118LR bullet experiences 87 complete half-coning cycles during its flight to 1000 yards.  

Numerical integration of ΔSD(t) using PRODAS data for each millisecond of the simulated 

“no wind” flight yields SD(1.6923 sec) = 9.7019 inches. PRODAS itself calculates a total drift 

of 9.5407 inches at 1000 yards. The PRODAS drift includes the horizontal component of the 

minimal coning motion of the spinning bullet.  

This level of agreement verifies our aeroballistic analysis of the causes of spin-drift.  
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Analytic Calculation of the Spin Drift at the Target 

If we formulate a reliable estimation of the scale factor ScF for any given bullet in any given 

firing conditions, this scale factor ScF can then be used together with a reliably calculated 

value of that bullet’s DROP from the bore axis at the target to calculate analytically the spin-

drift SD(t) at the target for any given rifle bullet in any firing conditions according to Eq. 2:  

SD(t) = -ScF*DROP(t)          (2) 

We know from examination of available “constant crosswind” PRODAS 6-DoF simulations 

that the scale factor ScF needs to be 0.0219685 for the “constant no-wind” (minimum coning 

angle) runs, and 0.0222219 (or 1.154 percent larger) for the somewhat more realistic 

“constant 10 MPH crosswind” runs for this example M118LR bullet fired in these simulated 
conditions to 1000 yards. 

The unrealistic “constant no-wind” PRODAS case represents the minimum possible SD(t) 

values for this bullet fired at this muzzle velocity and spin-rate in this atmosphere and flying 
with the minimum possible coning motion throughout its ballistic flight.  

Most dynamically stable rifle bullets fired outdoors at long ranges will likely suffer only the 

minimal 1.154 percent increased “constant 10 MPH crosswind” type of spin-drift SD(t) at 

long ranges. 

However, a dynamically unstable rifle bullet, such as the infamous mid-range 30-caliber 168-

grain Sierra International, might experience about 5 percent greater spin-drift (SD) when 

fired to long ranges (up to 800 meters) through any non-zero crosswinds.  
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Estimating the Ratio of Second Moments of Inertia for Rifle Bullets 

We need an accurate estimation of the ratio Iy/Ix for our rifle bullet so that we can find the 

coning rate ω2(t) of that bullet at any time t during its flight from Tri-Cyclic Theory. 

We will use the reference diameter for our subject bullet d(in inches) = 1.00 calibers as the 
distance metric throughout these calculations.  

Input parameters are needed which describe the bullet. 

We need the weight Wt of the bullet in grains, and we need the average density ρP of the 

bullet based on its type of construction: 2235.6 grains/cubic inch for monolithic copper 

bullets; 2681 gr/in3 for a thick-jacketed, lead-alloy-cored bullet having no appreciable 

hollow cavities; 2750 gr/in3 for a thin-jacketed, pure-lead-cored match bullet; and 2120 

gr/in3 for monolithic bullets constructed of C360 brass.  

We need the actual length L of the bullet in calibers. We need the actual length LN of the nose 

of the bullet in calibers. We need the diameter of the meplat DM at the front of the bullet in 

calibers. We also need the RT/R circular-arc head-shape design ratio for the ogive (nose) of 

the bullet, termed RTR here.  

We then calculate the generating radius RT for a tangent ogive for this bullet, the full length 

LFT of a pointed tangent ogive, the full length LFC of a conical ogive, and the full nose length 

LFN of this bullet’s actual ogive shape if it went all the way to a pointed tip.  

RT = [LN2 + ((1 – DM)/2)2]/(1 – DM)       (32) 

LFT = SQRT(RT – 0.25)         (33) 

LFC = LN/(1 – DM)          (34) 

LFN = LFT*RTR + LFC*(1 – RTR)        (35) 

We then calculate The (full-ogive) total length LL of the bullet in calibers and shape factor h 
describing a cone-on-cylinder model of this rifle bullet:  

LL = L – LN + LFN 

h = LFN/LL           (36) 

We now calculate the weight Wtcalc in grains for the cone-on-cylinder model of this bullet:  

Wtcalc = (π/4)*ρP*d3 *LL*(1 – 2*h/3)       (37) 

We evaluate the polynomial f1(LL,h) as: 

f1(LL,h) = 15 – 12*h +LL2 *(60 – 160*h +180*h2 - 96*h3 + 19*h4)/(3 – 2*h).  (38) 
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We are now ready to calculate the ratio of the second moments of this bullet about its crossed 

principal axes:  

Iy/Ix = (Wt/Wtcalc)0.894 *f1(LL,h)/[30*(1 – 4*h/5)]     (39) 

This estimator matches within 1 percent the Iy/Ix ratios calculated by numerical integration 

for many different solid monolithic rifle bullet designs.  Applying this estimator to data for 

the old 30-caliber 168-grain Sierra International bullet [from McCoy, page 217 MEB] yields 

an Iy/Ix ratio of 7.7748 or 4.48 percent greater than the value 7.4413 reported by McCoy. 

This over-estimation is to be expected due to the significant hollow cavity within the nose of 
that bullet.  
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Estimating the Spin Drift Scale Factor  ScF 

With all this in mind, we formulate an estimator for an ScF value for the “constant 10 MPH 

crosswind” type of coning motion of our example bullet which can be duplicated for any 
other dynamically stable rifle bullet in any likely firing conditions.  

In flat firing, we can formulate the scale factor ScF in terms of the ratio of 1) the horizontal 

aerodynamic lift-force acting on the flying bullet due to its yaw of repose βR as that bullet 

nears its long-range target to 2) the vertically downward-acting weight of that bullet. In this 

manner, we can formulate ScF for any given bullet and likely wind conditions as:  

ScF = 1.01154*0.383703*[q(t)*S]*Sin[βR(t)]*CLβ(t)/Wt  

ScF = 0.388132*[q(t)*S]*βR(t)*CLβ(t)/Wt       (40) 

with Wt = 175.16/7000 representing the weight of this example M118LR bullet given in 
pounds-force lbf.  

Here again, as in the earlier simplified formulation of ΔΦ, we are ignoring the upward force 

on the free-flying bullet caused by the cross-bore component of its aeroballistic drag force. 

The force offset effects of these two simplifications cancel out here in forming this ratio for 

evaluating ScF.  

We define the scale factor ScF as the ratio of the magnitudes of the net rightward horizontal 

and downward vertical forces acting upon the flying bullet as a free body:  

ScF = {F}H/{F}V          (41) 

From Eq. 29 above, the net rightward horizontal force is {F}H :  

{FL}R  ≈ q(t)*S*CLβ(t)*βR(t) – q(t)*S*CD(t)*βT(t)      (29) 

The corresponding net downward vertical force {F}V is given by:  

{F}V = Wt - ΔΦ*FD = Wt - ΔΦ*q(t)*S*CD(t)      (42) 

Substituting these expressions into Eq. 41 and simplifying by utilizing Eq. 3 above,   

ScF*{F}V = {F}H = q(t)*S*CLβ(t)*βR(t) – q(t)*S*CD(t)*βT(t) =     (43) 

ScF*{F}V = ScF*Wt – (ScF*ΔΦ)*q(t)*S*CD(t) =  ScF*Wt – q(t)*S*CD(t)*βT(t)   (44) 

After adding the small quantity q(t)*S*CD(t)*βT(t) to these equal expressions, Eq. 43 and Eq. 

44, we have:  

ScF*{F}V + q(t)*S*CD(t)*βT(t) = q(t)*S*CLβ(t)*βR(t) = ScF*Wt 

ScF= q(t)*S*CLβ(t)*βR(t)/Wt        (45) 

which is the expression which we will actually evaluate for ScF at time T far downrange.  
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The initial constants (0.383703 and 0.388132) have been empirically determined from 

several PRODAS runs and should be the same for any dynamically stable rifle bullet in any 

firing conditions likely to be encountered in long-range shooting. The PRODAS runs show 

the M118LR bullet to be dynamically stable.  

These PRODAS simulations, together with the classic formulation for the yaw of repose angle 

βR(t), indicate that the scale factor ScF might need to be increased by about 5 percent for 

dynamically unstable bullets which will fly with significant coning angles throughout their 
flight when fired through any crosswinds at all.  

Each of these functions of time t should be evaluated at the time T when the bullet has slowed 

to an airspeed of 1340 feet per second (or approximately Mach 1.20, depending upon 

ambient conditions). 

This flight time T and the flight distance Rg at which it occurs are completely independent of 

the actual range to the target. The time T and range Rg to 1340 fps airspeed can be 

determined by using any current 3-DoF point-mass trajectory calculator.  

The airflow over any good long-range rifle bullet should remain safely above the turbulent 

transonic region at this 1340 fps airspeed in almost any reasonable atmospheric conditions. 

The more “aerodynamic” of our lowest-drag long-range rifle bullet designs will not 

encounter transonic buffeting until they slow to about Mach 1.10 airspeed. The needed 

coefficient of lift CLβ is particularly difficult to estimate for any bullet in the transonic 

airspeed regime.  

Most experienced long-range riflemen select their shooting equipment so that whenever 

possible their bullets will impact the target at airspeeds above Mach 1.2.  

For similar best-accuracy reasons, we base our calculation of ScF upon bullet data at 1340 

fps airspeed regardless of the actual range to the intended target.  

We calculate the potential drag-force q(T)*S using the calculated density ρ of the ambient 

atmosphere in slugs per cubic foot, and the airspeed V(T) = 1340 feet per second:  

q(T)*S = (π*d2/4)*(ρ/2)*(1340 fps)2             (46) 

This potential drag-force value should be about 1.1 lbf for a 30-caliber bullet at this airspeed 

depending on air density.  The potential drag-force at 1340 fps varies most strongly with the 

square of the caliber d of the bullet (in feet).  

The analytic estimate of βR(T) is calculated per Eq. 26 above with t = T and V(T) = 1340 fps. 

With these simplifications Eq. 26 becomes:  

βR(T) = -g*{exp[-(kω + kV)] - 1}/[f2(0)*V(0)*(kω + kV)]         (47) 
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If we know the initial gyroscopic stability Sg of the bullet, we can calculate the initial Stability 

Ratio R of its epicyclic rates f1/f2 from:  

R = 2*{Sg + SQRT[Sg*(Sg – 1)]} – 1              (48) 

The initial coning rate f2(0) in hertz can then be found from Tri-Cyclic Theory as:  

f2(0) = V(0)/[Tw*(Iy/Ix)*(R + 1)]        (49) 

where 

Tw = Absolute value of the Twist Rate of barrel in feet per turn.  

Iy/Ix = Ratio of transverse to axial second moments of inertia for this bullet as estimated 
above.  

Substituting back into Eq. 47, we have: 

βR(T) = -g*Tw*(Iy/Ix)*(R + 1)*{exp[-(kω + kV)] - 1}/[V2(0)*(kω + kV)]   (50) 

where  

V(0) = Launch velocity of this particular bullet in feet per second. [V(0) is assumed to exceed 
Mach 2.0]  

kω = -(0.585 + 0.0321/d)*T, as approximated earlier and used here for any long-range 
bullet, and 

kV = ln[1340/V(0)].  

This value βR(T) in radians is an estimate of the yaw of repose angle for this bullet where it 

slows to an airspeed of 1340 fps.  

The CLβ(T) value is estimated based on an estimate of the initial CLβ(0) for the Mach-speed 

of the bullet at launch (here Mach 2.3289) evaluated from Robert L. McCoy’s INTLIFT 

program for the nose-length effect, but using our own boat-tail effect lift reduction for these 

long-range bullets.  

We multiply McCoy’s nose-length estimated CL by the square root of 0.2720/BC7 for each 

bullet, reasoning that about half of any differing drag for bullets having higher or lower 

ballistic coefficients BC7 (relative to the G7 Reference Projectile) than our example M118LR 
bullet is due to having a more or less effective boat-tail design.  

If a more reliable BC1 value (relative to the G1 Reference Projectile) is available for your rifle 

bullet, use the square root of 0.5310/BC1 for this estimated CL adjustment for variations in 

bullet drag.  



30 / 51 Calculating Yaw of Repose and Spin Drift for Firing Point Conditions – Boatright & Ruiz – rev. 
September/2018  

 

 

The full nose-length (LFN) for the 30-caliber M118LR bullet is 2.5955 calibers. The initial 

coefficient of lift CLβ(0) at this Mach 2.3289 airspeed calculates to 2.720 using our adjusted 
INTLIFT estimate.  

Very slightly scaling McCoy’s published lift curve for the well-studied 30-caliber 168-grain 

Sierra International bullet to this lift coefficient 2.720 at this Mach 2.3289 airspeed yields a 
coefficient of lift CLβ(T) of 1.877 at Mach 1.20 in this standard sea-level ICAO atmosphere.  

The bullet’s coefficient of drag CD0 determines its time-rate of decay in Mach-speed. The 

supersonic lift-to-drag ratio FL/FD for any given angle-of-attack tends to be an invariant 
aerodynamic characteristic of each basic bullet shape. 

Since the coefficients of lift and drag are highly correlated at any given Mach-speed over the 
population of long-range rifle bullets, the same exponential time-decay coefficient:  

kL = ln[CLβ(T)/ CLβ(0)] = -0.3711         (51) 

can be used in propagating the coefficients of lift CLβ(T) for any long-range rifle bullets of 
interest here.  

We propagate this initial coefficient of lift CLβ(0) estimate forward to its value at time T as:  

CLβ(T) = CLβ(0)*exp{-0.3711*[V(0)/2600 fps]2 *(1.430 sec/T)}    (52) 

The coefficient of lift CLβ(T) for any very-low-drag (VLD) or ultra-low-drag (ULD) long-range 

rifle bullet should be smaller than 1.90 at this airspeed of 1340 fps. Bullets designed for lower 

aerodynamic drag will also produce less aerodynamic lift. Conversely, one cannot produce 

more lift without also increasing drag in aerodynamics.  

The exponential propagation function [Eq. 52] estimates a larger fraction of the initial 

coefficient of lift CLβ(0) remaining at 1340 fps airspeed when the time-of-flight T to that 
airspeed is increased due to firing a higher-drag bullet, but the initial velocity correction 

factor [V(0)/2600 fps]2 prevents this increase when time-of-flight T to 1340 fps increases 

simply due to firing that same bullet with a higher muzzle velocity V(0).  

That is, if the same bullet is fired at different muzzle velocities, its estimated coefficient of lift 
CLβ(T) when it has slowed to an airspeed of 1340 fps should remain the same.  

The muzzle velocity V(0) is assumed to exceed Mach 2. This coefficient of lift propagation 

yields the expected CLβ(T) = 1.8769 at 1340 fps for the M118LR bullet, and varies by less 

than 1 percent over any reasonable launch speeds V(0) for this one bullet type.  

The scale factor ScF is now calculated from Eq. 40 using the values of the time-functions at 
time T as calculated in Eq. 46, Eq. 50, and Eq. 52 above:  

ScF = 0.388132*[q(T)*S]*βR(T)*CLβ(T)/Wt      (53) 
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where  

0.388132 = An empirically determined constant (from PRODAS data) for all firings of 

“normally coning” dynamically stable rifle bullets through any non-zero, “reasonably steady” 
(non-diabolical) crosswinds.  

This constant is numerically necessary for several likely reasons, among them that the 

driving horizontal lift-force FL[t, βR(t)] is actually attributable only to the dynamic horizontal 
tracking error attitude angle εH(t) instead of the entire yaw-of-repose angle βR(t).  

If we might be slightly misestimating the yaw of repose angle βR(T) or coefficient of lift 

CLβ(T) used here in any systematic ways for these minimal-coning-motion “constant wind” 

6-DoF flight simulations, the empirically-determined initial constant factor 0.388132, from 
that same PRODAS data, tends to absorb any net systematic difference.  
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Calculating the Spin Drift at the Target 

The spin-drift SD(tof) at the target distance is calculated from Eq. 2 above using the invariant 

Scale Factor ScF, as calculated in Eq. 53 above for the bullet slowed to 1340 fps, and the total 
DROP from the axis of the bore for the actual time-of-flight (tof) to the target:  

SD(tof) = -ScF*DROP(tof)         (54)  

The Spin-Drift SD at the target is calculated here in Eq. 54 in the same distance or angular 
units in which the bullet’s DROP from the bore axis is given. Again, the proper algebraic sign 

depends upon coordinate system conventions and the sense of the bullet’s spin rotation.  

The bullet DROP and time-of-flight (tof) to the target are accurately calculated in many 

existing 3-DoF point-mass trajectory propagators. After all, the accurate calculation of bullet 

DROP at the target distance is the basic figure of merit for these software aids. 

The time-of-flight (tof) to the target is used in the Litz SD estimator and is nice to know even 

if we do not actually use it explicitly in these calculations.  

If your particular trajectory propagation program does not directly output “drop from bore 

axis” data, you can usually “fake” it into doing so by setting your scope height equal zero, 

setting the angle-of-fire accurately equal to that of the anticipated shot, setting the rifle’s 

“zero range” equal to some minimum distance (ideally zero, but perhaps 5 or 10 yards if 

made necessary by input limit constraints), and by specifying that the trajectory calculations 
go out to the target’s known or measured range.  

In other words, we want to calculate the DROP from the bore axis at the target distance as if 

we were “bore-sighted” on that long-range target.  

The smoothed spin-drift reported by PRODAS at 1000 yards for “constant zero-wind” 

simulations with this 175.16-grain M118LR bullet fired in these conditions is 9.5407 inches. 

The spin-drift SD at 1000 yards estimated via this algorithm using PRODAS data values (and 

without the factor of 1.01154 increase in ScF) is 9.5635 inches.  

Comparing the two results millisecond-by-millisecond, throughout the flight of 1692.3 

milliseconds, yields a mean difference of 0.0043 inches, with a population standard deviation 
of 0.0207 inches.  

This level of agreement between our analytical estimator for spin-drift for each millisecond 

and the PRODAS numerical (non-analytical) simulation results is rather astonishing. The 

rounding error for drop and drift data given in angular units in the PRODAS report format is 

0.180 inches at 1000 yards, and we are not even estimating the horizontal component of the 
bullet’s small coning motion which is included in the PRODAS drift data.  
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The agreement of this spin-drift SD estimator with PRODAS “constant 10 MPH crosswind” 

runs is also excellent when the Scale Factor ScF includes the 1.154 percent increase as 
formulated above.  

This 1.154-percent-augmented version of the ScF estimator in Eq. 48 should be calculated for 

outdoor firing of any other dynamically stable rifle bullets.  

Summary 

I. We fit an exponential tangent angle function βT(t) to extracted velocity-ratio data 

from a PRODAS simulation which minimizes the epicyclic swerve complications 

in measuring the yaw of repose angle βR(t). We discovered that the spin-drift SD 

at long range is affected slightly (about 5 percent) by the magnitude α(t) of coning 

motion experienced by the bullet en route to the target, with consistently larger 

coning angles α(t) producing slightly more spin-drift SD(t).  

 

II. We define the horizontal and vertical direction dynamic tracking error angles, εH 

and εV respectively, which should appear in a ballistician’s wind-axes plots 

resulting from 6-DoF flight simulations. Just as with the flight path angle Φ, the 

yaw of repose angle βR(t) logically should not appear in those wind-axes plots 

which reference as their origin the +V direction of the projectile’s mean velocity 

vector V, which is always tangent to its 3-dimensional mean trajectory. We 

provide an analytic formulation in Eq. 3 for βT(t), the horizontal tangent angle, 

which logically should be subtracted from the bullet’s spin-axis yaw attitude data 

before plotting.  

 

III. We explain the aerodynamic causes of yaw of repose and spin-drift and 

numerically verify those explanations using data from PRODAS 6-DoF simulations 

together with the principles of linear aeroballistic theory.  

 

IV. We reformulate the classic aeroballistic yaw of repose angle as βR = πPG/M, which 

holds for a significantly coning bullet with α(t)>>ΔΦ throughout its flight. 

Furthermore, βR(0) = 0.00 at launch by definition. For a minimally coning bullet 

with α(t)≳ΔΦ, βR = βT + εH ≈ 0.95πPG/M.  

 

V. We formulated an accurate analytic estimator for the ratio Iy/Ix of the second 

moments of inertia for any long-range rifle bullet so that the sum of its two 

epicyclic rates (ω1 + ω2) can be calculated via Tri-Cyclic Theory from the circular 

spin-rate ω of the bullet (in radians per second) remaining at any time t during its 

flight. We noted that the spin-rate ω(t) decreases very nearly exponentially with 

time t for modern rifle bullets:  
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ω(t) ≈ ω(0)*exp{[(-0.0321/d(inches)]*t}.  

 

VI. We note that in flat firing the spin-drift displacement SD of the bullet at any long 

range is essentially an invariant scale factor ScF times the bullet’s drop distance 

from the projected bore axis at that range. The scale factor ScF runs about 1.0 to 

2.3 percent for the various long-range rifle bullets in typical flat firing. That bullet’s 

drop from the axis of the bore is accurately computed in any 3-DoF trajectory 

propagation program. This same scale factor ScF defines the ratio of the horizontal 

and vertical angular deviations of the tangent to the mean trajectory from the axis 

of the bore at firing time (when t = 0). The angular deviation in the horizontal 

plane βT(t) is always equal to the Scale Factor ScF times the vertical-direction 

deviation ΔΦTotal(t) = Φ(t) – Φ(0).  

 

VII. We present an analytic calculation of that invariant scale factor ScF so that an 

accurate and reliable calculation of spin-drift SD(t) can be computed for any long-

range rifle bullet flat-fired in any likely conditions without relying upon 6-DoF 

simulations. This dimensionless Scale Factor ScF can also be used as part of a 

collection K of invariant values from Eq. 40 such that the yaw of repose angle βR(t) 

can be calculated for any flight time t as:  

 

βR(t) = K/[V2(t)*CLβ(t)]        (55) 

 

with  

 

K = (ScF/0.388132)*[Wt/(ρ*S/2)]      (56) 

 

This formulation of βR(t) is very similar to the classic formulation for βR(t), and 

this formulation also does not evaluate to zero at t = 0. This calculated non-zero 

initial yaw of repose attitude angle βR(0) ≈ 0.130 milliradians is just the initial yaw 

attitude which would be required to produce a hypothetical horizontal lift force 

of ScF*Wt at muzzle velocity V(0). Of course, no such side-force exists at bullet 

launch.   
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Example Calculations of ly/lx 

These parameters and calculations are needed to determine the crucially important ratio of 

the bullet’s second moments of inertia about its crossed principal axes Iy/Ix.  

Four different 30-caliber rifle bullets are selected in addition to our example M118LR bullet 

in these parallel (spreadsheet) calculations for variety and based on availability of bullet 

measurements for estimating Iy/Ix ratios. Two of the additional 30-caliber rifle bullets are 
included because they were tested in “drift firings” by Bryan Litz.  

The obsolete 168-grain Sierra International bullet (for which McCoy supplies the needed 

data) is similar to their current, improved 30-caliber 168-grain MatchKing (SMK). We 

tabulated the calculations of Iy/Ix because this ratio was measured and reported by McCoy.  

We have several PRODAS runs for the bullet used in 2011 in the US Army M118LR 7.62 mm 

NATO Special Ball ammunition. The 175.16-grain M118LR bullet used by PRODAS has an 

Iy/Ix ratio which can be determined very accurately from the PRODAS reports. We are using 

reasonably estimated bullet shape parameters scaled from images which produce 

approximately that PRODAS calculated Iy/Ix value in lieu of the actual bullet shape data on 
the M118LR bullet until such data can be obtained.  

The 173-grain solid (monolithic) brass Ultra-Low-Drag (ULD) bullet design has not yet been 

tested, but its numerical design description allows accurate modeling of its flight 

characteristics using McCoy’s aeroballistic estimators. We calculated its mass 
characteristics, including its Iy/Ix ratio, using accurate numerical integration.  

The dimensional data on the Berger 175-grain Open-Tip Match (OTM) Tactical bullet and 

their 185-grain Long Range Boat Tail (LRBT) bullets, as well as the test conditions during 
their 1000-yard drift firings, were taken from Bryan Litz’s publications.  

An Iy/Ix ratio of 7.4413 is published by McCoy for the old 168-grain Sierra International 

bullet. Our estimate of 7.7748 is 4.48 percent larger than McCoy’s measured value. This over-

estimation is to be expected given that bullet’s significant hollow nose cavity.  

The target Iy/Ix ratio of 13.4733 for the new 173-grain monolithic brass ULD bullet was 

calculated by numerical integration of its elements of mass. Our estimated value here of 

13.4975 is just 0.180 percent larger than this value.  

The data used here for the two Berger 30-caliber bullets selected by Bryan Litz in his drift 

firing experiments at 1000 yards are taken from his publications. Long-range drift firings are 

a traditional method for measuring horizontal spin-drift. No information is available 

concerning their Iy/Ix ratios.  
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30-Caliber Example 
Bullets: 

168-gr 
International 

175.16-gr 
M118LR 

173-gr  
ULD(SB) 

175-gr 
Berger 
Tactical 

185-gr Berger 
LR-BT 

Reference Diameter 
(inches) 0.3080 0.3080 0.3002 0.3080 0.3080 

Bullet Length L (cal) 3.9800 4.4000 5.4368 4.1169 4.3929 

Nose Length LN (cal) 2.2600 2.4500 2.8368 2.3701 2.5747 

Diameter of Meplat 
DM (cal) 0.2500 0.2175 0.1000 0.1948 0.2013 

Length of Boat-Tail 
LBT (cal) 0.5100 0.6000 0.7012 0.6331 0.5844 

Diameter of Base DB 
(cal) 0.7645 0.8000 0.8420 0.8409 0.8182 

Ratio of Ogive 
Generating Radii 

RT/R 0.9000 1.0000 0.5000 0.9000 0.9500 

Rho-P, Bullet Density 
in grains/cu. in. 2750 2600 2128 2750 2750 

Rho-P, Ave. Specific 
Gravity (gm/cc): 10.8742 10.2811 8.4147 10.8742 10.8742 

Wt, Bullet Weight in 
grains 168 175.16 173 175 185 

      
Calc. Tangent Ogive 

Radius RT (cal) 6.9976 7.8666 9.1666 7.1779 8.4993 

Calc. Full Tangent 
Ogive Length LFT 

(cal) 2.5976 2.7598 2.9861 2.6321 2.8722 

Calc. Full Conical 
Nose Length LFC 

(cal) 3.0133 3.1310 3.1520 2.9435 3.2236 

Calc. Full Nose 
Length LFN (cal) 2.6392 2.7598 3.0690 2.6632 2.8897 

Length LL with LFN 
(cal) 4.3592 4.7098 5.6690 4.4100 4.7079 

h, Ratio LFN/LL 0.6054 0.5860 0.5414 0.6039 0.6138 

Wtcalc, Calc Wt in 
grains 164.0601 171.2331 163.8186 166.2542 175.5264 

f1(LL,h) 117.7480 141.1386 218.6318 120.6627 133.9879 
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Cone-on-Cylinder 
Estimated Iy/Ix= 7.7748 9.0376 13.4975 8.1466 9.1976 

      

Target Iy/Ix 7.4413 9.0673 13.4733   

Iy/Ix Error: 0.3335 -0.0297 0.0242   

Percent Error: 4.481 -0.328 0.180   
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Example Calculations of Spin Drift 

The remaining parameters needed to calculate yaw of repose βR and spin-drift SD are 

calculated for these same five example bullets in another spreadsheet shown below. A 3-DoF 

trajectory program was used to compute the time-of-flight (tof) and flight distance to an 

airspeed of 1340 FPS and tof to a 1000-yard target for both the 168-grain SMK bullet and the 

new 173-grain ULD bullet. PRODAS trajectory data was used for the 175.16-grain M118LR 

bullet.  

The initial gyroscopic stability factor Sg was taken from McCoy for the old 168-grain Sierra 

International bullet, and Sg is calculated using McCoy’s McGYRO program for the new 173-
grain ULD bullet. 

PRODAS reports the Sg-value for each millisecond of the flight of the M118LR bullet, but we 

just used their initial value.  Bryan Litz gives the initial Sg values for the two Berger bullets 
used in his drift firings.  

The ULD bullet is a dual-diameter design with the base of the ogive measuring 0.3002 inches 

in diameter (1.0-calibers for this bullet design). It has a rear driving-band measuring 0.3082 

inches in diameter (or 1.02665 calibers). The midpoint (CG) of the rear driving-band is 

located 1.6 calibers behind the base of its 3-caliber secant ogive, and the width of this driving 

band is 0.6 calibers.  

Our calculated yaw of repose angles βR for the first three example bullets when each has 
slowed to an airspeed of 1340 FPS shows an interesting progression. 

The estimated yaw of repose angles βR of the three trajectories at the 1340 FPS airspeed 

points are 0.471231 milliradians for the obsolete 168-grain International bullet at 816 yards 

downrange, and 0.693417 milliradians at 888.5 yards downrange for the M118LR bullet, but 

just 0.434382 milliradians for the new 173-grain monolithic brass ULD bullet fired at 3200 
fps, and this occurs way beyond the 1000-yard target at 1457 yards downrange.  

The assumed 3200 fps muzzle velocity of this new ULD bullet is based on firing it from a 300 

Remington UltraMag cartridge. Each of the other example 30-caliber bullets is assumed to 

be fired from a much less powerful 7.62 mm NATO or 308 Winchester cartridge.  

For comparison purposes the spin-drift SD at 1000 yards is calculated in inches for each of 
our five example bullets using the SD estimator published by Bryan Litz:  

SD(inches) = 1.25*(Sg + 1.2)*(tof)1.83        (57) 

Our estimates of SD at 1000 yards are smaller than Bryan’s estimates for each of these five 

example bullets. Our estimate of spin-drift SD at 1000 yards for the M118LR bullet of 9.5111 

inches matches the SD computed by PRODAS (9.5407 inches) quite closely (error: -0.0296 
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inches, or -0.003 percent). The Litz-estimated SD of 10.2791 inches for this M118LR bullet at 

1000 yards exceeds the PRODAS value by 0.7156 inches, or +7.483 percent.  

Our estimate of 6.8061 inches of spin-drift SD at 1000 yards for the old 168-grain Sierra 

International bullet from a 12-inch twist barrel is approximately 2.344 inches less than the 

9.15 inches shown graphically  by McCoy in Figure 9.8 of his MEB, and is 3.214 inches less 
than the 10.020 inches calculated by the Litz estimator for this bullet. 

We expected our estimate to be 5 percent (or 0.340 inches) too small for this dynamically 
unstable bullet. We cannot readily explain the remainder of this difference. Perhaps we 

should concede that this formulation inherently assumes that the rifle bullet is dynamically 
stable.  

Our estimate of 4.2983 inches of spin-drift SD at 1000 yards for the radical new 173-grain 

monolithic brass ULD bullet design, versus the value of 5.1696 inches calculated by the Litz 

estimator for this bullet, indicates the need for our more elaborate SD calculation in 

predicting the long-range flights of current and future ultra-low-lift rifle bullets, even when 

fired from faster twist-rate barrels.  

The Litz spin-drift estimator is closer than our estimator to reported spin-drift values for the 
old 168-grain Sierra International bullet and for the Berger 175-grain OTM Tactical bullet. 

Our estimator seems closer for the remaining three bullets, especially for the two very-low-

drag (and correspondingly very-low-lift) bullets—the copper 173-grain ULD bullet and the 

Berger 185-grain Long Range Boat-Tail (LR-BT) bullet.  

Of course, our predictive agreement with the PRODAS calculations for the M118LR bullet is 

best of all. We expect that if 6-DoF simulations could be run for the other four bullets, our 

estimator would match those results more closely.  

We also suspect that Bryan’s drift firing results would not match linear 6-DoF simulation 

results particularly well if they could be computed.  

The aerodynamic responses of real rifle bullets are non-linear enough to affect the 

calculation of these small second-order effects. Real bullets are also subject to other types of 

aerodynamic jump phenomena in real firings—some of which might be at least partially 
systematic.  
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Spin-Drift Example 
Calculations: 

     

      

30-Caliber 
Example Bullets: 

168-gr 
Internation

al 

175.16-gr 
M118LR 

173-gr  
ULD 

175-gr 
Berger 
Tactical 

185-gr 
Berger 
LR-BT 

Bullet Length L (cal) 3.9800 4.4000 5.4368 4.1169 4.3929 

Nose Length LN (cal) 2.2600 2.4500 2.8368 2.3701 2.5747 

Diameter of Meplat 
DM (cal) 

0.2500 0.2175 0.0808 0.1948 0.2013 

Length of Boat-Tail LBT 
(cal) 

0.5100 0.6000 0.7012 0.6331 0.5844 

Diameter of Base DB 
(cal) 

0.7645 0.8000 0.8420 0.8409 0.8182 

Ratio of Ogive 
Generating Radii RT/R 

0.9000 1.0000 0.5000 0.9000 0.9500 

Calc. Tangent Ogive 
Radius RT (cal) 

6.9976 7.8666 8.9846 7.1779 8.4993 

Calc. Full Tangent 
Ogive Length LFT (cal) 

2.5976 2.7598 2.9554 2.6321 2.8722 

Calc. Full Conical Nose 
Length LFC (cal) 

3.0133 3.1310 3.0862 2.9435 3.2236 

Calc. Full Nose Length 
LFN (cal) 

2.6392 2.7598 3.0208 2.6632 2.8897 

      

V0=Launch velocity 
(FPS): 

2800.00 2600.07 3200.00 2660.00 2630.00 

Initial Mach-Speed 2.5079 2.3289 2.8662 2.4332 2.4057 

Initial B-value 2.3000 2.1032 2.6861 2.2182 2.1880 

Ballistic Coef (G1 Ref) 0.4260 0.5460 0.6290 0.5060 0.5530 

Ballistic Coef (G7 Ref) 0.2180 0.2720 0.3220 0.2580 0.2830 

INTLIFT CL(0) 3.1015 2.6759 2.5670 2.8145 2.6189 

Time T to 1340 FPS 
(sec) 

1.2723 1.4300 2.1070 1.3972 1.5030 

Range at 1340 FPS 
Airspeed (yards) 

816.00 888.50 1457.00 881.54 839.10 

Est CL(T) at 1340 FPS: 1.9120 1.8463 1.7528 1.8913 1.8248       
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Twist Rate 
(inches/turn, RH) 

12.0000 11.5000 8.2500 10.0000 10.0000 

Initial Sg 1.7400 1.9400 1.5940 2.2400 1.9100 

Initial Stability Ratio 
(R) 

4.7494 5.5808 4.1341 6.8132 5.4567 

Calculated (Iy/Ix) Ratio 7.7748 9.0376 13.4975 8.1466 9.1976 

Initial Coning Rate f2 
(hz) 

62.6387 45.6182 67.1674 50.1486 53.1437 

kv=LN(1340/V(0) -0.73695 -0.66287 -0.87048 -0.68566 -0.67431 

komega+kv -1.61385 -1.64845 -2.32837 -1.64866 -1.71021 

Beta-R at time T 
(mrad) 

0.4572 0.6909 0.5954 0.6144 0.6098 

      

Ref. Diam. (1.0 cal. in 
inches):    

0.3080 0.3080 0.3002 0.3080 0.3080 

Frontal Area at Base of 
Ogive S (square feet) 

0.0005174 0.0005174 0.0004915 0.0005174 0.0005174 

Potential Drag Force at 
1340 fps (lbf) 

1.1041 1.1041 1.0489 1.1137 1.1137 

      

Bullet Weight (grains) 168.00 175.16 173.00 175.00 185.00 

Bullet Weight (lbf) 0.02400 0.02502 0.02471 0.02500 0.02643 

Calculated Scale Factor 
ScF 

0.01561 0.02185 0.01719 0.02009 0.01820 

      

DROP from Bore Axis 
at 1000 yds (inches) 

436.0450 435.3450 250.0250 428.4970 414.8350 

Time of Flight (tof) to 
1000 yds (seconds) 

1.7300 1.6923 1.2390 1.6870 1.6400 

Remaining Velocity at 
1000 yds (FPS) 

1145.00 1213.99 1836.00 1197.00 1278.00 

Calculated 1000-yd 
Spin-Drift (inches 

rightward) 

6.8061 9.5111 4.2983 8.6095 7.5496 

      

SD from McCoy Figure 
9.8 

9.1500 
    

SD from PRODAS runs 
 

9.5407 
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SD (inches) from Drift 
Firings 

   

11.4000 6.7000 

Litz Est. Spin-Drift 
(inches rightward) 

10.0203 10.2791 5.1696 11.1967 9.6125 

Litz Est. Spin-Drift 
Minus Our Calc. SD 

(inches) 

3.2142 0.7679 0.8713 2.5871 2.0628 
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Sensitivity Analysis & Model comparisons 

Sensitivity analysis was significant in studying and assessing the uncertainty in the output of 

our model, which can be attributed to different sources of error of the input parameters.  

Sensitivity analysis is an integral part of model development and involves analytical 

examination of input parameters to aid in model validation and provide guidance for future 

research.  

We used it to determine how different values of one or more independent variables, impact 

a particular dependent variable under a given set of conditions.  

In other words, it helped us to investigate the robustness of the model predictions and to 
explore the impact of varying input assumptions.  

We chose to set on what is known as local (sampled) sensitivity analysis, which is derivative 

based (numerical or analytical). The use of this technique is the assessment of the local 

impact of input factors' variation on model response by concentrating on the sensitivity in 
vicinity of a set of factor values. 

Such sensitivity is often evaluated through 2-dimensional gradients or partial derivatives of 

the output functions at these factor values, (the values of other input factors are kept 
constant) when studying the local sensitivity of a given input factor.  

One of the critical objectives was to stress-test the model as well as to study its fidelity to 
known experimental and model-based 6-DoF runs.  

Unfortunately there are many results and accompanying charts to add, but in order to make 

the document more manageable we’ve chosen to include only a pair of them, which are 
significant in terms of reliability of the underlying numerical algorithm.  

The following charts compare the outputs of three models to estimate SD, namely Hornady 

4-DoF, Litz and the B&R method presented in this paper.  

In the case of Hornady’s 4-DoF, the reader must take into consideration that three major 

variables, Sg, DROP and ToF, are different than the ones used to calculate the B&R and Litz 
outputs because it produces different DROP and ToF values as well as a varying Sg. 

On the other hand, all DROP and ToF figures are the same for both Litz and B&R, and were 

calculated with a common 3-DoF point mass software with a fixed-muzzle-only Sg based on 

Miller’ rule. Indeed neither model is intended to work with a progressively increasing static 

stability.  
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As can be easily seen, the response to a varying Sg with a fixed ToF is clearly linear for both 

models. Same behavior for a varying ToF with a fixed Sg. Bear in mind that the variation 
ranges are quite narrow, which is the normal and expected uncertainty of these inputs. 
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The slight decrease in SD with increasing ToF shown above for the B&R model is explained 

by not adjusting the velocity V(t) of the bullet as ToF is varied. The B&R model uses V(t) 
explicitly in many places.  

 

 

 

In the 4-DoF case, the model response to a varying initial Sg with a fixed ToF, is quasi-linear 

and also exhibits a quite similar magnitude of the delta variation of Sg as the Litz and B&R 

models.  

The 4-DoF (Modified Point-Mass, Lieske & Reiter, 1966) provides an estimate of the yaw of 

repose. This model considers the bullet rolling motion around its longitudinal axis of 

symmetry, called spinning motion. Therefore, this model presents four degrees of freedom: 
three translational coordinates for describing position and one for angular speed.  

Some may argue that the underlying phenomena calls for a more elaborated multi-

parameter analysis and while the concept is right, we chose to perform a single parameter 

analysis in order to compare to the Litz model which is a simple 2D model and as such does 

not relate the influence of one parameter over the other as the bullet goes down range, 

namely the aerodynamic coefficients. 
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The Spin Drift is expressed inches, while each bullet is compared with the three different 

estimators, and grouped at 1000, 1500 and 2000 yards, which are typical ranges for 
extended Long Range shooting.   

The Litz estimator does fair work, given its simple inputs, but its reliability is dictated by the 

underlying aerodynamics characteristics of the bullet, which are not accounted for in this 

simple linear approach.  

Consequently, as soon as the bullet does not exhibit certain properties that cannot be 

encompassed by Sg alone, its predictive accuracy is decidedly affected. In general terms, the 

Litz model tends to over predict SD in a significant way.  
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As can be appreciated, as the range increases, the difference among the estimators becomes 

larger. The practical side of this is that the correct method is of paramount importance when 
dealing with Extreme Long Range (ELR) shooting.  
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Closing Summary 

Taken together, the implications of Eq. 8 and Eq. 19 determine the bullet and rifle 

characteristics which affect the size of the horizontal spin-drift SD(t) which will be seen in 
flat firing at a long-range target.  

First, we see from Eq. 8 that SD(t) displacement is always proportional to the bullet’s 

DROP(t) in distance units from the projected axis of the bore at firing. 

This implies that modern lighter-weight “flat shooting” bullets fired at higher muzzle 

velocities V(0) and retaining more velocity farther downrange (higher ballistic coefficient, 

lower drag bullets) will produce much less spin-drift SD(t) at any target distance compared 

to slower, higher-drag bullets. That is, SD(t) is roughly proportional to time-of-flight t to the 
target distance.  

Second, according to Eq. 19, the size of the scale factor ScF, and thence the size of the spin-

drift SD(t), varies directly with the “potential ballistic drag force” q(t)*S = ρ*V2(t)*S/2 in 
pounds. The ambient atmospheric density ρ varies with shooting conditions. 

The rifle bullet’s retained velocity V(t) depends upon its muzzle velocity V(0), its mass m, 

and the integrated drag function CDα  of that bullet. The bullet’s cross-sectional area S = 

π*d2/4 varies with the square of the bullet’s caliber d.  

Third, the spin-drift SD(t) of the bullet is proportional to its yaw of repose angle βR(t) 
throughout its flight:  

βR(t) = (2π*g/t)∫[ω2(t)*V(t)]-1 dt  

Both the coning rate ω2(t) and the forward velocity V(t) of the bullet always gradually 

decrease, continually increasing βR(t) throughout the bullet’s flight. The coning rate ω2(t) is 

determined by the bullet’s fixed inertial ratio Iy/Ix and by the remaining spin-rate ω(t) and 
slowly increasing gyroscopic stability Sg of the flying bullet. 

The forward velocity V(t) of the flying bullet depends on its launch velocity V(0) and its 

coefficient of drag profile.  

The yaw of repose attitude angle βR(t) is increased for bullets having larger numerical Iy/Ix 

ratios and higher initial stability Sg, but βR(t) is decreased by using faster twist-rate barrels 
and higher muzzle velocities V(0) to achieve that higher gyroscopic stability Sg.  

Fourth, the spin-drift SD(t) is directly proportional to the small-yaw coefficient of lift CLβ(t) 

of the bullet. Very-Low-Drag (VLD) and Ultra-Low-Drag (ULD) bullet designs usually have 
correspondingly reduced coefficient-of-lift functions at all supersonic airspeeds.  

Fifth, and lastly, the spin-drift SD(t) of the bullet is inversely proportional to the weight Wt 
(or mass m) of that bullet. 
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All else being equal, bullets made with lower average material densities, such as turned brass 

or copper bullets, will weigh less and will suffer greater spin-drift.  

These five SD effects combine multiplicatively in this analysis. 

Some bullet and rifle design parameters recur in several of these different SD effects, and not 
always working in the same direction.  

As modern long-range rifles and their bullets seem to be evolving toward lighter-weight, 

smaller-caliber, lower-drag bullets fired at higher muzzle velocities, these related 

incremental variations in design parameters combine algebraically to reduce the spin-drift 
SD occurring on long-range targets.  
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