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1. Recoil Effects on the Rifle Barrel 
In accordance with Newton’s Third Law of Motion, initial-stage rifle recoil 

(before bullet exit) occurs only in reaction to the forward acceleration of 

the rifle bullet (together with a small portion of the powder charge) during 

the firing of the rifle. Rifle recoil does not commence until after the rifle 

bullet has been engraved with the rifling pattern and is free to accelerate 

down the bore. The line-of-action of this rearward recoil force acting on 

the rifle is coaxial with the bore of the rifle barrel. In interior ballistics, this 

recoil force acting rearward on the rifle can be well quantified at any time 

after bullet engravement as being equal in magnitude and opposite in 

direction to the base-pressure driving the bullet forward multiplied by the 

cross-sectional area of the bore being obturated by that bullet. After 

initial engraving of the rifle bullet by the rifling lands, the forward-acting 

force of barrel friction is typically less than 2-percent of the bullet’s 

driving force and is thus considered negligible here.  

This rearward recoil force on the rifle can be envisioned as being applied 

primarily to the rifle at the center of its breech face as a significant 

portion of the thrust of the cartridge case head (and primer) against that 

breech face plus whatever secondary rearward-acting frictional force 

might pertain between the outside walls of the cartridge case and the 

chamber walls.  

The CG of most shoulder-fired rifles being fired in an upright position is 

located several millimeters (dCG) vertically below the axis of its bore. 

Thus, the recoil force briefly creates a barrel-bending torque impulse 

acting vertically upward at the front face of the receiver upon the rear 

shoulder of the (assumed) free-floating rifle barrel. Here, we are 

analytically treating this upward torque impulse as being approximately 

of a Gaussian shape (a normal probability distribution function) in the 

time domain, with its peak occurring at the instant of peak base-pressure 
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driving the bullet forward in the rifle barrel. Peak base-pressure normally 

occurs when the bullet has moved just a few inches into the bore.  

This analytical treatment allows the reasonably precise formulation of 

the barrel’s dynamic response at its muzzle to this torque impulse being 

applied at its receiver end. We are not concerned here with the muzzle 

of the barrel being dragged straight rearward during recoil. Good rifle 

design and firing technique should eliminate any disturbance of the rifle 

barrel in the horizontal plane during firing, leaving only vertical plane 

motions to be formulated here.  

 

Closely inspecting the base-pressure curve plotted against time in a 

good interior ballistics application such as QuickLOAD©, we see that it 

does indeed appear distinctly Gaussian in its excitation profile, having a 

“standard deviation” spread function, Sigma(μ-sec), given by its rise 

time in microseconds (μ-sec) from 60.65-percent to 100-percent of 

the peak base-pressure PBP. We are not concerned here with the slightly 

skewed shape of this base-pressure curve because we are mainly 

interested in the rising limb of this base-pressure function. The dashed 

red vertical line in this QL graph shows the time of peak chamber 

pressure (PMax) which occurs just after peak base-pressure PBP. As the 

bullet moves down the barrel at velocity V(t), its driving base-pressure is 
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approximated by the instantaneous chamber pressure P(t) minus a 

dynamic pressure, 0.5*ρ*V2.  

This recoil-induced, bending torque impulse acting upon the shoulders 

of the barrel imparts a time-reversed, approximately Gaussian-shaped 

transverse shear-wave in a vertical plane into the material of the rifle 

barrel at its junction with the receiver face. This transverse shear-wave 

travels toward the muzzle at its own invariant linear propagation rate in 

the (assumed isotropic steel) material from which the barrel is made. For 

the rifle barrel as a “long, slender rod,” its longitudinal shear-wave 

propagation rate is given by the square root of the shear modulus of 

elasticity (G) divided by the density (ρ) for the barrel steel material. This 

wave speed is not affected by moderate barrel taper.  

The driving recoil torque impulse also generally resembles the first half 

of a sinusoidal pressure-wave having a fundamental frequency fp (in 

hertz) which we term the “peak excitation frequency:”  

  fp = 1/[4*(rise time of base-pressure pulse in seconds)]  

The barrel’s recoil-driven vibrational excitation spectrum in the frequency 

domain is given by the real part of the Fourier transform of this base-

pressure curve in the time domain. Since we are modeling this base 

pressure curve as a Gaussian-shaped function of time, the transformed 

excitation spectrum must therefore be another Gaussian function of 

frequency, centered on the peak excitation frequency fp and having a 

spread function Sigma(hertz) inversely related to Sigma(μ-sec) of its 

equivalent time-domain Gaussian driving function:  

  (2π)*Sigma(hertz) = 1,000,000/[Sigma(μ-sec)]  

or  Sigma(hertz) = 159,154.94/[Sigma(μ-sec)].  

If we model the rifle barrel mechanically as a “long, slender rod” of an 

isotropic steel material, we can use engineering handbook formulations 

to calculate its response to this forced shear-wave initial distortion. 

Specifically, the rifle barrel is modelled as a thick-walled, linearly 

tapered, hollow cylindrical cantilever beam having a clamped end at its 

receiver junction and a free end at its muzzle. The model of the rifle 

barrel being used here includes a reduced diameter barrel tenon, a 

possible cylindrical chamber swell portion, a possible constant-rate 
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(linear) taper toward the muzzle, and possibly with both fixed-position 

and adjustable-position muzzle masses attached. These two types of 

muzzle attachments are each modeled as point masses with their CG 

locations XCG specified relative to the muzzle. The empty bore and 

chamber volumes are each considered to be cylindrical here and are 

removed in calculating the volume of the barrel. The barrel tenon itself is 

not used in vibrational calculations because it is behind the front face of 

the receiver.  

A properly inialized interior ballistics program such as QuickLOAD© 

gives us the time of bullet engravement, the time of 60.65-percent of 

peak base-pressure (one sigma before the time of peak base-pressure), 

the time of peak base-pressure itself, and the time of bullet exit from the 

muzzle of our rifle barrel of specified internally rod-measured length Lint. 

Calculated peak base-pressure behind the bullet and the muzzle exit 

speed of the bullet are also available and are utilized.  

We can calculate the “signaling delay” between the time the shear-wave 

is introduced at the receiver/barrel junction and the earliest time t0 at 

which the muzzle of the barrel first begins to react vibrationally to this 

recoil-driven torque impulse:  

Signaling Delay = Barrel Length/Shear-Wave Propagation Rate 

Here we use the input Barrel Length Lext as measured externally from 

receiver face to muzzle. We calculate the shear-wave propagation rate 

along the rifle barrel as an un-tensioned “long, slender rod” from the 

properties of the (isotropic steel) barrel material as the square root of its 

shear modulus of elasticity G divided by its density ρ. This transverse 

shear-wave longitudinal propagation rate is about 3054 meters per 

second (or 10,020 feet/second) for 416R stainless steel rifle barrels.  

The muzzle begins to vibrate sinusoidally in a longitudinal vertical plane 

as soon as the leading edge of the upward bending torque (shear-wave) 

signal reaches it at the muzzle vibration start time t0. These sinusoidal 

transverse vibrations are of multiple standing-wave modes n, all starting 

simultaneously, with each vibration mode continuing at its own specific 

mode frequency fn which we calculate from handbook data for the barrel 

as a tapered cantilever beam including possible muzzle-attached 

masses. Each of these mode frequencies fn is a naturally resonant 
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(constructively reinforcing) standing-wave frequency for transverse 

vibrations reflecting back and forth along the length Lext of the rifle barrel 

at the shear-wave speed. After peak excitation, these barrel vibrations 

damp exponentially with a ring-damping time constant characterized 

here as a large multiple of their round-trip time up and down the physical 

length Lext of the barrel. Here, we are using the same damping time 

constant for all significant vibrational mode frequencies fn.  

This analytical technique of abruptly switching from an initial forcing 

function at the moment of peak distortion to a damped oscillation 

function for these rifle barrel vibrations is akin to modeling the plucking 

of a guitar string versus the bowing of a violin string, as analogs of initial 

forced distortion versus continuous “pumping” of a mechanical vibration. 

This analytical treatment is justified here as being consistent with 

treating the rifle’s recoil force effects as being impulsive in nature.  

The actual muzzle motion is the instantaneous algebraic sum of the 

simultaneous sinusoidal vibration modes at their respective excitation 

amplitudes evaluated at the muzzle. The driving excitation or damping 

functions for the different vibration modes each vary as Gaussian or 

exponential functions of time which can thus be “factored out” 

analytically as a separation of variables.  

As shown below, we combine the Gaussian driving function with an 

exponential vibrational decay, or damping function, as a Pulse Width 

Modulation function of time, by using only the increasing limb of the 

base-pressure function then switching to the damping function at the 

time of the peak base-pressure. If we used the decreasing limb of the 

pressure curve, the barrel vibrations would be killed out prematurely. 

The rifle barrel continues its oscillatory ringing long after the bullet has 

exited its muzzle. The only drawback with this approach is introduction 

of a step discontinuity in the second order (muzzle lateral acceleration) 

calculations at this transition time, which is itself much earlier than any 

reasonable bullet exit time. This transition time is when the peak base-

pressure occurs, creating the peak upward bending torque on the rear of 

the barrel, and is thus the peak time of the transverse shear-wave being 

formed at the receiver face and propagating toward the muzzle.  
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We may seek to tune the muzzle exit times of our fired bullets to match 

a vibrational reversal time (or halt) in vertical muzzle motion when the 

muzzle is momentarily stationary relative to the fixed earth as a quasi-

inertial reference system. Known side benefits of this traditional type of 

barrel/load tuning are minimizing vertical (transverse) kick-velocities ΔV 

imparted to our fired bullets and regularizing the muzzle pointing super-

elevation angles ϴ for each bullet being launched. This traditional type 

of barrel and cartridge tuning is preferred for firing conventional jacketed 

lead-core match bullets in which the CG of the bullet is relatively near its 

point of last contact with the crown of the muzzle during the bullet’s 

muzzle exiting process; i.e., typically less than one caliber ahead of that 

point of last contact. The barrels firing these bullets are often made with 

the slowest possible rifling twist-rates (40 to 60 calibers per turn) to 

minimize lateral throw-off with these slightly unbalanced projectiles. The 

ratio of the second moments of inertia Iy/Ix for these bullets is relatively 

small (7:1 to 10:1), and their initial coning rates in ballistic flight are 

often about 65 hertz. The integration time over which initial aerodynamic 

jump deflection accumulates is relatively brief (7.7 msec), being half the 

period of the first coning cycle, so their trajectory deflection angles are 

relatively small. Initial yaw and yaw-rate bullet attitude errors at launch 

are less important in subsequent ballistic flight when firing these bullets.  

We can also achieve partial “compensation” for long-range gravity-drop 

variations due to slight variations in bullet launch velocities by tuning our 

expected (group mean) bullet exit times to occur a few microseconds 

earlier than an upward-to-downward muzzle halt, or just after a 

downward-to-upward muzzle reversal. This partial gravity-drop 

compensation is based upon an assumed (but quite likely) strong 

inverse correlation between variations in bullet launch velocities and 

variations in muzzle exit times within groups of shots. Tuned either way, 

muzzle motion is slightly upward at the nominal bullet exit time, and 

any somewhat faster bullets, exiting earlier than average, will be 

launched at slightly lower than average muzzle super-elevation angles 

ϴ. These faster-than-average bullets will require less time-of-flight to 

reach a given distant target and will thus suffer less gravity drop as a 

result, and vice versa.  
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Alternatively, we may seek to tune our rifle barrel and cartridge loading 

so as to launch a long, monolithic copper Ultra-Low-Drag (ULD) bullet 

with minimum initial yaw-rate, or “tip-off.” We do that by tuning for bullet 

exit at, or near, a zero crossing of the y-double-dot(t) function where 

the lateral acceleration of the bullet as it clears the muzzle is minimal. 

The worked Excel spreadsheet example shows this type of tuning for 

firing our longer CNC-turned 245.3-grain copper ULD bullets of 338 

caliber with a (QuickLOAD) calculated muzzle exit time of 1306 

microseconds from our 25.5-inch Heavy Varmint test barrel. The best 

type of tuning to match any cartridge to its rifle barrel is simultaneously 

to achieve both the traditional minimum lateral muzzle velocity and this 

novel minimum lateral muzzle acceleration types of tuning. So far, this 

goal seems readily attainable only by using a barrel-block rifle design 

wherein the front of the clamped barrel-block functionally replaces the 

receiver face in the vibration calculations. This is an area for further 

exploration.  

These long copper ULD bullets have Iy/Ix ratios about twice those of 

conventional jacketed lead-core match bullets, and consequently they 

are fired from barrels having very fast twist-rate rifling (20 to 24 calibers 

per turn) for best gyroscopic and dynamic stability. The CG of our 

example copper ULD bullet is 1.537 calibers ahead of its point of last 

contact during bullet exit. In ballistic flight, the initial coning rates of 

these copper bullets is typically only about 25 hertz, or slower. Because 

of their much longer accumulation time intervals, aerodynamic jump 

trajectory deflections and significant initial yaw-drag penalties are of 

much greater concern in firing these CNC-turned copper ULD bullets to 

reach their designed performance potential.  

 

2. Barrel Transverse Vibration Modes 
For a uniform cantilever beam, its natural transverse shear-wave 

vibration mode frequencies fn are well determined, primarily by its beam 

length L and secondarily by its flexural rigidity E*I and its mass per unit 

length A*ρ, where L is the barrel’s “vibrational length,” E is Young’s 

Modulus of Elasticity for the barrel steel, I is the second moment of 
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cross-sectional area (A) anywhere along the uniform cylindrical rifle 

barrel, and ρ is the density (mass per unit volume) of the barrel steel:  

  f(n) = [1/(2π)]*[λ(n)/L]2 *SQRT[E*I/(A*ρ)]   

The mode natural frequency constants λ(n) in radians have been 

precisely measured empirically and are given in engineering handbooks.  

For a thick-walled circularly cylindrical rifle barrel of uniform outside 

diameter D and caliber d, the second moment of cross-sectional area I 

is given by  

  I = (π/32)*(D4 – d4) 

and its cylindrical cross-sectional area A is given at any point by  

  A = (π/4)*(D2 – d2)  

The transverse vibration modes are numbered according to the count n 

of the vibration nodes (locations of zero vibrational amplitude) occurring 

over the beam length L for that vibrational mode shape. After the first 

few vibration modes, the natural mode frequencies fn increase 

approximately with (2*n – 1)2 for each successively higher mode number 

n. The mode shapes yn(x/L) for this clamped/free cantilever beam show 

the barrel’s forced bending responses to the driving torque excitation 

spectrum at each particular mode frequency fn:  

  yn(x/L) = COSH(λn*x/L) – COS(λn*x/L) 

   -σn*[SINH(λn*x/L) – SIN(λn*x/L)] 

where COSH and SINH are hyperbolic trigonometric functions, and the 

mode shape constants σn from the handbooks are also empirically 

measured. The first five mode shapes for our example rifle barrel are 

shown below for x/L = 0 at the receiver face (clamped end) to 100-

percent of the vibrational length L just beyond the muzzle (free end):  
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These mode shapes also show the maximum vibration amplitudes of the 

sinusoidal vibrations (at that mode frequency fn) for each segment of the 

barrel (including its muzzle). By limiting excursions either above or 

below the neutral line, each individual mode shape shows the sinusoidal 

vibration envelope for each point along the beam. The clamped barrel-

to-receiver joint is always a (zero amplitude) vibration node, while the 

free muzzle end (for a cylindrical barrel without any attached masses) is 

always considered to be a full-amplitude vibrational anti-node for each 

individual vibration mode.  

Note that the actual muzzle position shown here is at about 96-percent 

of the vibrational length L of this example for our tapered 25.5-inch 

barrel having a small attached muzzle mass (a lightweight 4-ounce 

muzzle brake). For a plain tapered barrel having no muzzle attachment, 

its effective vibrational length is always shorter than its physical length. 

The Mode 1 resonant frequency increases with barrel taper, while the 

higher mode frequencies decrease with barrel taper.  

Adding any point mass attachment at or near the muzzle always  

increases the vibrational length L of any barrel, including that of the 

tapered example shown here. The increased vibrational length L shown 

here has the effect of shifting the vibration nodes for Mode 2 and higher-

numbered modes toward the muzzle end of the actual barrel.  

Each segment of rifle barrel material, including the muzzle, vibrates 

sinusoidally and simultaneously in a vertical plane at all significant mode 

frequencies fn. At the muzzle, each mode frequency vibration initiates at 
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the first instance of the forcing shear-wave reaching the muzzle (at t0). 

Thereafter, these independent vibratory motions mechanically combine 

at each particular location along the barrel (including at the muzzle) as 

the algebraic sum of the various mode-frequency motions. Note that, at 

the muzzle, each odd-numbered mode vibration starts out going positive 

(upward), while the even-numbered modes each starts out going 

negative (downward) at t0 when the positive-going leading edge of the 

shear-wave distortion first reaches the muzzle.  

In particular, the muzzle-end segment of the barrel vibrates transversely 

in a vertical plane according to the instantaneous algebraic sum of the 

first seven, or so, sinusoidal vibration modes (depending on the highest 

mode frequency fn which the driving force can effectively excite). Only 

the longest and limberest practical rifle barrel (e.g. a No. 1 Mk. III SMLE 

rifle barrel) could have any significant recoil excitation of its relatively 

reduced frequency Mode 7 vibrations.  

The muzzle vertical position y(t) is given at any time t after initial 

excitation time t0 by: 

  y(t) = PW(t)*Σ(n=1, 7){(-1)n-1 *A(n)*SIN[2π*f(n)*(t – t0)]} 

The initial muzzle excitation time t0 is calculated as the sum of the input 

bullet engravement delay from an interior ballistics program and a 

calculated signaling delay based upon barrel length and material 

properties. All modes of muzzle vibrations initiate simultaneously at this 

time t0. The Pulse Width Modulation function PW(t) and mode 

vibrational amplitudes A(n) are described later.  

The actual barrel shape at the time of bullet exit is shown below for our 

worked example from the spreadsheet calculations:  
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Of course, the vertical scale is greatly exaggerated here relative to the 

horizontal scale. The horizontal “tail” shown here to the right of the 

muzzle position at about 96-percent of L is an artifact of Excel’s curve-

fitting and of my limited Excel programming skills.  

The natural mode frequencies fn for a tapered rifle barrel including any 

muzzle attachments are given in hertz by:  

  fn = [1/(2*π)]*[λn/L]2 *SQRT[E*I0/(M/L)] 

where M is the total mass of the barrel forward of the receiver face 

including all attachments and L is the vibrationally effective barrel length.  

The mode n frequency constants λn are taken from the handbook, 

Formulas for Natural Frequencies and Mode Shapes, 1979, by Blevins 

for a tapered cantilever beam with clamped and free ends. These mode 

constants were measured experimentally. A modification to these mode 

frequency constants λn is formulated herein for handling modestly 

tapered rifle barrels based on non-linear graphical data also given in 

Blevins.  

The mode shapes are shown graphically in Sheet 2 of the worked 

spreadsheet example. Note that with an upward-bending driving torque 

applied at the receiver end of the barrel, the muzzle end is initially 

moved upward by each odd-numbered vibration mode and downward by 

each even-numbered vibration mode.  

A Gaussian Pulse Width modulation function of time, PWG(t), is also 

calculated based on the approximately Gaussian shape of the recoil 
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generating base-pressure function in the time domain and the time of 

peak muzzle disturbance tPM calculated from input data.  

  PWG(t) = EXP{-0.5*[(t – tPM)/sigma(time)]2}  

The time of peak muzzle disturbance tPM is calculated by summing the 

input time of peak base-pressure and the calculated signaling delay.  

An exponential ring-damping pulse-width function, PWD(t) is formulated 

as:   

  PWD(t) = EXP[-(t – tPM)/(time constant)] for t>tPM 

The decay time constant is formulated as a large multiple of the round-

trip time for a shear-wave traversing up and down the barrel length Lext.  

A combined Pulse Width function PW(t) is then formed by logically 

combining these two time-functions:  

IF t ≤ tPM 

  PW(t) = PWG(t) 

IF t > tPM 

  PW(t) = PWD(t) 

This logical combining formulation is used to prevent the downward limb 

of the recoil driving function PWG(t) from prematurely damping out the 

vibrational ringing of the barrel which continues long after bullet exit.  

Muzzle vertical position in microns (micro-meters), y(t) is then 

calculated and plotted for each microsecond of reasonably possible rifle 

bullet exit times, out to t = t0 + 2.000 milliseconds. This table of 

calculated muzzle positions is then differenced to form a table of 

muzzle velocities y-dot(t) given in meters per second (m/sec) centered 

on each microsecond of possible bullet exit times. Then, this velocity 

table is itself differenced to form a table of muzzle accelerations y-

double-dot(t) given in meters per second squared (m/sec2) for each 

microsecond of possible exit times. Graphs of these tables are shown in 

the next section below for this example case.  

The excitation spectrum calculations are shown for a worked example in 

Sheet 3 of the available Excel workbook. The mode vibration Peak 
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Amplitudes An at the muzzle are found by multiplying a calculated Mode 

1 excitation amplitude by the relative amplitudes from the excitation 

spectrum for each mode frequency fn and by a Phase Adjustment 

factor accounting for the actual muzzle location sometimes being less 

than the vibrational length L from the receiver face. The sinusoidal 

mode-shape vibration equations (as given in Blevins) for all modes 

(including Mode 1) are normalized for unit response at the muzzle end.  

The muzzle excitation amplitude is calculated for Mode 1 from basic 

physics:  

  y(t) = Mode 1 muzzle position at time t 

  y(max) = 0.5*(d2y/dt2)*[Δt]2   [Constant acceleration] 

  ΓMax = dCG*Pb*[(π/4)*d2]  [Peak driving torque] 

  ΓMax = Iy(rcvr end)*(dω/dt)  [ω is angular velocity] 

  Iy(rcvr end) = (1/3)*M*L2   [Cylindrical barrel]  

  Δt = σ(t)*SQRT[2π] = 2.50663*σ(t) 

  dω/dt = (1/Lext)*d2y/dt2 = 2*y(max)/{Lext*[2.50663*σ(t)]2} 

  dω/dt = 3*ΓMax/(M*L2) 

  y(max) = (3π)*[σ(t)]2 *[ΓMax*Lext/(M*L2)] 

Note that 2.50663*σ(t) is the time duration Δt of a square-wave impulse 

function with enclosed area equal to the area under the Gaussian curve:  

 ΓMax*Δt = ʃt Γ(t)*dt = ΓMax*[σ(t)*SQRT(2π)] = ΓMax*2.50663*σ(t) 

We are treating the total torque impulse ʃt Γ(t)*dt as being equivalent to 

applying the peak torque ΓMax constantly for just 2.50663*σ(t) seconds.  

This maximum muzzle displacement y(max) calculated for Mode 1 is 

then also used as the maximum possible muzzle displacement for each 

individual higher numbered vibrational mode n.  
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The peak Relative Excitation Amplitudes REA(n) are found for each 

mode frequency fn from the Gaussian excitation spectrum in the 

frequency domain:  

  REA(n) = EXP{-0.5*[(fn – f(peak))/sigma(hz)]2} 

 

 

 

3. Barrel Taper and Muzzle Attachments 
The handbook calculations of muzzle position as a function of ongoing 

time y(t) are quite accurate for cylindrical rifle barrels having uniform 

outside diameter D and having no muzzle attachment(s). We have 

formulated extensions of these calculations to handle those target rifles 

typically having moderately straight-tapered barrels, as a Heavy 

Varmint profile barrel for example, and having fixed-position (muzzle 
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brake) and/or adjustable-position (tuner) muzzle attachments. These 

extended formulations collapse exactly to the handbook natural vibration 

mode formulations for a uniform cantilever beam with no attached 

muzzle masses whenever the user-specified barrel dimension and 

attachment mass values describe such a barrel.  

The vibrationally equivalent system has mass M1 equal to the total mass 

of the actual rifle barrel M0 plus its muzzle attachment m. The vibrational 

length L1 of the vibrationally equivalent tapered cantilever beam is found 

by summing the second moments of inertia IEND of the barrel and its 

attachment m about the receiver end of the barrel and solving for the 

equivalent length L1 of the assembly. Except in calculating the volume of 

the steel barrel and thence its mass M, the exact caliber of the bore 

through the rifle barrel has little effect (<0.03 percent) on the transverse 

shear-wave vibrations of a typically heavy target rifle barrel. So, the 

effect of the barrel being somewhat hollowed out is ignored. [The fiber of 

material connecting cross-sectional centroids of a beam is neither 

stretched nor compressed under bending load, so it contributes nothing 

toward the overall rigidity of that beam.]  

If we consider all second moments of inertia I to be taken about the 

same transverse horizontal axis through the receiver/barrel junction, we 

can sum the moments of inertia for the component pieces of the plain 

barrel and the attached muzzle brake to find that of the combination. 

Furthermore, we can divide the moment of inertia of the plain tapered 

barrel into its tapered barrel part Itaper (before and after adding the 

muzzle brake attachment m) and its possible cylindrical chamber swell 

part Ics. So, the total moment of inertia for the combination can be 

written as 

   I1taper + Ics = I0taper + Ics + mmb*(Lext + XCG)2 

Since we are not changing the barrel’s chamber swell in adjusting 

externally measured length Lext to its equivalent vibrational length L1 

with the addition of the muzzle brake mmb, the moment of inertia of that 

chamber swell portion Ics remains fixed, and we are only “stretching” the 

tapered part of any tapered barrel to account for adding the muzzle 

attachment. Thus,  

   I1taper = I0taper + mmb*(Lext + XCG)2 
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To find the second moment of inertia Itaper about the receiver end of the 

heavy, uniformly tapered portion of the rifle barrel itself, we make use of 

the handbook formulation for the transverse radius of gyration k about a 

transverse axis through the large end of the frustum of a cone:  

I0taper = M0*k0
2 

where  M0 = Mass of the barrel 

k0
2 = 0.1*Ltaper

2 *[(D2 + 3*D*d +6*d2)/(D2 +D*d + d2)] + D*d/16  

or  k0
2 = TC2*Ltaper

2 + D*d/16 

    and Ltaper = Lext - Lcs = Length of the barrel taper 

  D = Maximum (receiver-end) diameter of the tapered barrel 

  d = Muzzle diameter of the tapered barrel [D/2 < d < D], and 

TC2 = 0.1*[(D2 + 3*D*d +6*d2)/(D2 +D*d + d2)]. 

The small second term, D*d/16, replaces the handbook second term, 

(3/80)*(D5 – d5)/(D3 – d3), which is not well behaved computationally as d 

approaches D for a cylindrical barrel example. The replacement term is 

the ratio of the limits of the numerator and denominator as d approaches 

D which correctly collapses to D2/16 whenever d equals D.  

Since the barrel’s specified major D and minor d diameters remain 

unchanged while adjusting the vibrational length of a tapered barrel, the 

taper constant TC2 remains the same, with or without the muzzle 

attachment mmb.  

Note that Itaper is now measured about an axis through the front of the 

chamber swell (if any) instead of the receiver face. So, our inertia 

summing relationship is adjusted accordingly for this axis change: 

  I1taper = I0taper + mmb*(Lext – Lcs + XCG)2  

Summing the second moments of inertia about the receiver (or chamber 

swell) end of the barrel with a point mass mmb attached a short distance 

XCG from the crown of the muzzle, for the tapered portion of the barrel 

we have  

  M1*k1
2 = M0*k0

2 + mmb*(LExt – Lcs + XCG)2 
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with M1 = M0 + mmb. 

Then, solving for the vibrationally adjusted, externally measured barrel 

length L1 we have 

L1 = Lcs + SQRT{(M0/M1)*(Lext - Lcs)2 + 

+ [(Lext – Lcs + XCG)2 - D*d/16]*mmb/(M1*TC2)]}  

Here, in calculating the equivalent vibrational length L1 after attaching a 

mass mmb to the muzzle of the rifle barrel, we are analytically stretching 

the uniformly tapered portion (Lext – Lcs) of the barrel without explicitly 

changing its mass M1 nor its end diameters D and d. The only likely use 

for a barrel blank profile having a significant fraction of its length as a 

straight cylinder Lcs would be a barrel intended for barrel-block mounting 

into the stock. In that case, the front of the barrel-block should take the 

place of the receiver face here. The receiver should be free-floating in 

the stock, and the scope should be cantilever mounted to the barrel-

block. The barrel-block transfers the recoil force to the rifle stock.  

This calculation is repeated for adding the second muzzle attachment 

mtuner, except for starting with the previous resulting subtotal mass M1 

and vibrational length L1.  

Attaching any mass m at or near the muzzle of a rifle barrel will always 

lower the natural mode frequencies fn as if that barrel were of longer 

vibrational length L1. The ratio of the actual barrel length Lext to its 

greater vibrational length L1 shows how attaching a barrel mass always 

shifts the vibrational node points toward the muzzle end of the rifle 

barrel.  

As shown in Sheet 1 of the available Excel workbook, we accept input of 

barrel dimensions similar to those used to describe match-grade barrel 

blanks and calculate the volumes of each portion of the barrel, tenon, 

chamber swell, taper, and the empty bore and chamber.  
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The mass of the barrel Mbar ahead of the receiver face is then calculated 

from its total steel volume and the input density ρ for that type of barrel 

steel. We use the externally measured barrel length Lext for vibration 

calculations. [The internal rod-measured barrel length Lint is needed for 

QuickLOAD] So, before considering any possible muzzle attachments, 

we start with:  

  M = Mbar  

  L = Lext 

Muzzle attachments are modeled as point masses (Msub) with their CG 

axial locations (Xsub) given relative to the muzzle as specified inputs. 

Fixed-position attachments are labeled (subscripted) mb for “muzzle 

brake,” and adjustable-position attachments are labeled tuner for “barrel 

tuner,” although either could be any other type of muzzle attachment. 

The rotational inertia of any mass attached to the muzzle end of the 

barrel is ignored, at least for now. [A “point-mass” has zero second 

moments of inertia about each of its principal axes.]  

Blevins also gives a “one percent accurate” formulation for the Mode 1 

vibration frequency f1 for an attached point mass with its CG located 

exactly at the free end of a uniform cantilever beam. This formulation for 

f1 was evaluated numerically as a cross-check on the more flexible and 

analytically useful formulation described above. The cross-check Mode 

1 frequency calculation was 46.131 hertz, versus 45.555 hertz 

calculated our way for a cylindrical rifle barrel with a point mass attached 

with its CG exactly at the muzzle and weighing 25 percent of the barrel 

weight. This f1 difference, 1.266 percent, is less for lighter barrel 
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attachments, but does not go quite to zero for a zero-mass attachment 

at the muzzle. This cross-check is considered to be satisfied, given its 

stated accuracy limits.  

Following Blevins, the controlling outside diameter D for the tapered 

cantilever beam is the (maximum) OD of the barrel abutting the receiver 

face Dmax, and the controlling cross-sectional area A is calculated there 

as well. However, since the area A is no longer invariant over the length 

of the tapered barrel, instead of formulating the “mass per unit length” 

needed in calculating the mode frequencies as A*ρ, we simply divide the 

total mass M of the barrel assembly by its calculated vibrationally 

effective barrel length L. We must also adjust the formulation for the 

areal second moment I to be calculated at the junction with the receiver 

face as I0:  

  I0 = (π/32)*(Dmax
4 – dch

4)  

where dch is the inside diameter of the chamber at the axial location of 

the receiver face as measured at that location on a fired cartridge case. 

The input value of dch must be greater than, or equal to, the bore ID (or 

caliber) d, but well less than Dmax, of course. [Continue to use the caliber 

d instead of dch here with barrel-block rifles.]  

Blevins graphically gives non-linear values for the first three mode 

frequency constants λn as a function of the beam taper ratio Dmax/Dmin = 

D/Dmuz over values from 1 to 5 for truncated, linearly tapered cantilever 

beams. By restricting this linear taper range to from 1 to 2 for real rifle 

barrels (Dmuz ≥ Dmax/2), we fit the following linear taper functions for 

calculating the mode frequency constants λn:  

  λ1 = 1.87510407 + (0.012267)*(Dmax/Dmuz – 1) 

  λ2 = 4.69409113 + (-0.59020)*(Dmax/Dmuz – 1) 

  λ3 = 7.85475744 + (-1.2162)*(Dmax/Dmuz – 1) 

  λ4 = 10.99554073 + (-1.7030)*(Dmax/Dmuz – 1) 

  λ5 = 14.13716839 + (-2.1889)*(Dmax/Dmuz – 1) 

  λ6 = 17.27875960 + (-2.6753)*(Dmax/Dmuz – 1) 

  λ7 = 20.42035225 + (-3.1617)*(Dmax/Dmuz – 1)  
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The taper coefficients for modes 4 through 7 are estimated based on the 

pattern shown graphically for the first three modes. For Dmuz = Dmax, this 

formulation collapses to the more accurately measured λn values for a 

uniform cantilever beam. Note that while the Mode 1 frequency 

increases with barrel taper, each higher mode frequency decreases 

with barrel taper.  

It should also be noted here that similar calculations of barrel ID 

expansion pulses, as yet another type of barrel vibration mode, could be 

undertaken by those concerned with “Optimum Barrel Time” tuning. 

Those bore expansion pulses are also shear-wave vibrations 

propagating along the rifle barrel at the same rate as these vertical-

plane transverse shear-wave vibrations and reflecting off its ends. [A 

shear-wave is one in which particle vibratory motion is perpendicular to 

the propagation direction of the wave motion.] While these bore 

expansion waves initiate simultaneously with the transverse waves at 

the time of peak base-pressure, their initial peak internal barrel diameter 

expansions occur within the barrel at the bullet base location (a few 

inches in front of the receiver face) at the instant of peak base-pressure 

behind the bullet instead of at the receiver face as with the recoil-

induced torque. So they must always remain several microseconds out 

of phase with these transverse shear-wave vibrations even after many 

reflections back and forth. [Bullet contact pressure increases the internal 

barrel expansion usually calculated using Lamé’s Equation considering 

only the base-pressure driving the bullet. This increase is a factor (1 + 

μbullet) where μbullet < 0.5 is Poisson’s Ratio for the bullet core material.]   

 

4. Gravity Droop of Barrel 
We do not need to formulate here the significant gravity droop of the rifle 

barrel with its muzzle attachments because that drooping does not 

significantly affect the muzzle motions of a typical target rifle barrel 

during recoil. In flat firing, the presence or absence of the earth’s 

gravitational field does not affect the recoil-forced barrel distortions nor 

its subsequent ringing muzzle vibrations. All transverse barrel distortions 

and vibrations work equally well with a gradually curved barrel in the 

earth’s gravity field as they would with the same rifle barrel fired 
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perfectly straight in the zero-g of earth orbit. In flat firing on earth, the 

static neutral point of muzzle position is simply displaced downward by a 

few thousandths of an inch affecting point of aim and point of impact 

consistently for each shot. A similar argument can be made for 

neglecting the downward bias in muzzle pointing angle at bullet exit due 

to gravity droop. These effects are well accommodated during the 

“zeroing” of the rifle’s sighting system in ambient firing conditions.  

We are similarly ignoring the dynamic internal pressure “stiffening” of the 

rifle barrel during firing, which works dynamically to reduce its 

gravitational droop at bullet exit, because of the relatively thick walls of 

our target rifle barrels—as opposed to those of typical artillery tubes, for 

example. The “Bourdon tube” hoop-stress effect, which slightly 

increases Mode 1 upward displacement at the time of bullet exit, is 

negligibly small here for our circularly concentric, very thick-walled, steel 

target rifle barrels.  

5. Worked Example 
A “live” Excel workbook of four spreadsheets which perform these 

calculations is freely available as an email attachment upon request 

from the author. In addition to having access to a current version of 

Microsoft Excel, the user will also need access to a good interior 

ballistics program such as QuickLOAD©, which we routinely use in load 

development here. In particular, this analysis uses the QL definition of 

start time (t = 0) based upon the initiation of significant chamber 

pressure rise to the prevailing shot-start pressure. Other interior 

ballistics programs might use time-since-sear-break, or time-since-

primer-ignition, either of which would occur earlier, and their event 

timings would require adjustment for use here. [Just note the time of 

initial chamber pressure rise attributable to powder combustion to the 

shot-start pressure and subtract that time from all other event times.]  

The example shown is for a painstakingly assembled load in a heavy-

barrel 338 Lapua Magnum test rifle using a 25.5-inch Heavy Varmint 

profile Schneider P5 barrel of 416R stainless steel made with an 

experimental 7.0-inch twist rate (20.7 calibers per turn). The muzzle 

end of the barrel is threaded 0.75-inch by 24 TPI for accepting muzzle 

attachments such as the lightweight (4.127 ounce) Barrett MRAD 
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muzzle brake used here. The bullet is a developmental CNC-turned, 

245.3-grain monolithic copper Ultra-Low-Drag (ULD) projectile propelled 

by 92.0-grains of the VihtaVouri N565 temperature-stabilized powder 

incorporating an anti-copper-fouling additive. The copper bullets are 

base-drilled (at 0.45 caliber) in manufacturing to allow internal 

expansion for proper sealing of the powder gasses, and they 

consistently exit the muzzle at 2814 fps (+/- 4 fps) as measured using 

an inertially triggered LabRadar unit. QuickLOAD© shows these bullets 

exiting the muzzle at t = 1314 microseconds. All firing tests are 

conducted in a high-volume indoor test range on targets at 105 yards 

from a massively sturdy firing bench. [The current spreadsheet shows 

tuning for a shortened and re-chambered version of this Schneider 

barrel. The powder load is adjusted to 96.0 grains, reflecting the reduced 

shot-start pressure required with the new 1.5-degree throat angle.]  

Sheet 1 of the available Excel workbook is for the Data Inputs, Sheet 2 

shows the calculation of the Mode Frequencies and Shapes, Sheet 3 

shows the relative Excitation Spectrum, and Sheet 4 shows the 

Calculated Results, both numerically and graphically, including graphs 

of muzzle vertical position y(t) in micro-meters versus time t in 

microseconds, muzzle velocity y-dot(t) in meters/second, and Muzzle 

lateral acceleration y-double-dot(t) in meters/second squared. The 

table of Event Times shows the QL-calculated bullet exit occurring at t 

= 1306 microseconds when the lateral acceleration y-double-dot(t), 

and thus the lateral force [F = m*a, with m being the mass of the 

projectile] on the bullet leaving the muzzle, is essentially zero (< +/- 2.5 

m/s2). The rather large lateral acceleration values shown at other times 

are primarily attributable to the great stiffness (E*I) of the rigid large-

diameter steel barrel.  

The large lateral force exerted upon the bullet of mass m during its 

muzzle exit process, which tends to occur with traditional barrel tuning 

for bullet exit at a muzzle vibrational reversal time, causes significant 

“tip-off” yaw-rates when firing long copper ULD bullets. This longer type 

of bullet typically has its CG located more than one caliber ahead of its 

point of last contact while exiting the bore. The resulting initial yaw-rate 

of tumbling is then subject to amplification by the reverse aerodynamics 

encountered by the bullet in transiting the muzzle-blast zone before 
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commencing ballistic flight. This significant initial ballistic yaw-rate then 

causes poor accuracy and excess air drag in subsequent ballistic flight--

attributable primarily to the slower coning rates of these longer bullets 

fired from faster twist-rate barrels.  

However, one should not peremptorily dismiss any of these tiny-

appearing vibrational amplitudes, muzzle speeds, and lateral 

accelerations as being so small that they can safely be ignored. They 

are perfectly capable of wrecking the expected performance of good 

rifles, bullets, and ammunition. Untuned combinations exhibit less than 

stellar target accuracy and smaller than necessary measured Ballistic 

Coefficient (BC) values having far greater shot-to-shot variability than 

otherwise necessary.  

The attached plots show barrel-to-load tuning for bullet exit at essentially 

zero lateral acceleration at 1306 microseconds, bullet exit time. This is 

for an experimental test firing to launch long, monolithic copper ULD 

bullets with minimum initial yaw-rate.  
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The step-discontinuity in muzzle lateral acceleration is a formulation artifact 

caused by suddenly switching from recoil-forced distortion of the barrel to 

damped ringing at the instant of peak muzzle disturbance at t = 700 

microseconds here. No actual rifle bullet could exit the muzzle of a 25.5-

inch barrel anything like this quickly. Note that the peak upward 

acceleration of the muzzle is an impressive 125 “G’s” of 9.80665 m/sec2 

each in this example.  
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A photograph of one of the completed muzzle brake and tuning assemblies 

tested is shown below.  

 

 

6. Summary 
If you find that you lack sufficient control authority in tuning your bullet 

weight and propellant load choices for bullet exit at or very near one of 

your barrel’s plotted muzzle reversal times or zero-force crossing times, 

your choice of rifle barrel profile, length, and weight/position of muzzle 

attachment simply cannot optimally fire bullets of your selected length, 

caliber, chambering, and bullet-weight range. Shortening an existing 

slightly too long barrel can often allow the desired load tuning with the 

desired bullet, powder, and muzzle attachment. Adding an additional 

muzzle-attached barrel mass can vibrationally lengthen a too-short 

barrel for tuning. Using this analytical tool during rifle design could 

possibly avoid making costly mistakes in rifle building.  
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Using the spreadsheet calculations, one can identify particular 

combinations of barrel dimensions, rifle building techniques, and muzzle 

attachments which will result in the muzzle exit time for a particular 

cartridge and bullet being simultaneously at near zero lateral 

acceleration and near zero lateral velocity of the muzzle. This type of 

“super-tuning” would be advantageous in firing any type of rifle bullet.  


