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General 
These thoughts the stability of rifle bullets in flight apply primarily during 

their supersonic flights in flat firing to long ranges. While rifle bullet stability 

in the muzzle-blast zone and far downrange in the transonic and subsonic 

flight regimes are not yet fully investigated, a few comments and 

observations will be included about those rifle bullet stability concerns.  

Gyroscopic Stability 
Gyroscopic Stability (Sg) refers to the ability of a spin-stabilized, statically 
unstable rifle bullet to resist tumbling in flight caused by its aerodynamic 
overturning moment. Basically, Sg is formulated as the ratio of the spinning 
bullet’s axial rigidity to its aerodynamic overturning moment at any point 
during its ballistic flight.  
 
A rifle bullet is termed statically unstable because its center of mass is 
almost always located behind its center of aerodynamic pressure CP in 
aeroballistic flight. Herein, we shall use the more common term “center of 
gravity” CG interchangeably with the more proper term “center of mass.” 
With its CP located ahead of its CG, a rifle bullet always tends to swap 
ends in aeroballistic free flight. A high initial rate of spin is imparted to the 
fired bullet by the rifling of the barrel to prevent its erratic tumbling in 
aeroballistic flight.  
 
The axial rigidity of the free flying bullet is solely attributable to its angular 
momentum L about its spin axis. L is a vector quantity pointing forward 
along the spin-axis of a right-hand spinning rifle bullet, which is the only 
spin direction being considered here to avoid unnecessary complexity.  
 
The aerodynamic overturning moment M causes the spinning bullet, acting 
as a free-flying gyroscope in ballistic flight, to precess and nutate in flight 
instead of tumbling erratically. These two gyroscopic reactions cause the 
spin-axis of the bullet to trace out its familiar epicyclic motions in “aircraft 
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type” pitch and yaw attitude angles. As a rotationally symmetric solid of 
revolution, the aeroballistic angle-of-attack α of a rifle bullet is the root-sum-
squares (RSS) of its aircraft-type pitch and yaw attitude angles. This angle-
of-attack α is conventionally termed a “yaw” attitude in aeroballistics work.  
 
The slow-mode motion of the spin-axis direction is gyroscopic precession, 
and the fast-mode motion is gyroscopic nutation. This slow-mode motion is 
also called “coning motion” in Coning Theory. When the spinning rifle bullet 
is flying with a non-zero aeroballistic angle-of-attack α, the overturning 
moment M (a torque vector) rotates in roll orientation along with the slow-
mode gyroscopic precession of the spin-axis of that bullet.  
 
The angular rates of these fast-mode and slow-mode spin-axis epicyclic 
motions are ω1 and ω2, respectively, in radians per second. They are 
readily found from the Tri-Cyclic Theory relationships:  
 
   ω1 + ω2 = (Ix/Iy)*ω = ω2*(R + 1)  
   R = ω1/ω2  
   Sg = (R + 1)2/(4*R)  
 
where ω is the instantaneous spin-rate of the rifle bullet itself in radians 
per second and Ix/Iy is the dimensionless ratio of the second moments of 
inertia about crossed principal axes for the mass distribution of that bullet.  
 
The spin-rate of the bullet ω decreases very nearly exponentially with time 
of flight t:  
 
   ω(t) ≈ ω(0)*exp[(-0.0321/(12*d))*t]  
where   d = Caliber of bullet in feet.  
 
The stability ratio R is a better, more sensitive, indicator of gyroscopic 
stability than is Sg itself.  
 
  R = 2*{Sg + SQRT[Sg*(Sg – 1)]} – 1.  
 
 
Sg is classically defined in aeroballistics as 
 
 Sg = P2/(4*M) = (ω1 + ω2)2/(4*ω1*ω2) = (R + 1)2/(4*R).   
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In particular, we often need to find the initial gyroscopic stability Sg of a 
just-fired bullet. We can find it from the initial stability ratio R.  
 
    R + 1 = (Ix/Iy)*[ω(0)/ω2(0)]   
 
Substituting into the above expression for the initial value of R + 1, and 
simplifying, we have 
 
R + 1 = (Ix/Iy)*{[2π*V/(n*d)]2 *(m*d2 *kx2)/[(ρ/2)*V2 *(π/4)*d3 *CMα]} 
 
R + 1 = (Ix/Iy)*{[32π*m*kx2]/[n2 *ρ*d3 *CMα]} 
 
For the monolithic copper Mark II ULD bullets of any caliber d in inches,  
 
    Iy/Ix = 14.0 
    kx-2 = 9.0 
    ρP = 8.84 gm/cc = 2235.6 grains/in3  
    Volume of bullet = 3.15*d3  
    m = ρP*Volume of bullet 
  ρP/ρ = [123 *2235.6/7000]/0.0764742 lbm/ft3 = 7216.5 (ICAO) 
    n = 20 calibers/turn 
    R + 1 = 10.97 
  R + 1 = (Ix/Iy)*{[32π*3.15*(ρP/ρ)*kx2]/[n2 *CMα]} 
 
So, for a sea-level ICAO standard atmosphere 
 
 CMα = [32π*3.15/(14.0*9.0)]*[(7216.5)/20.02]/10.97 = 4.1333 
 
And, 
    R(0) = (4179/n2) – 1.  
 
As n varies by about a factor of 2 for target rifles, from about 20 calibers 
per turn down to about 40 calibers per turn in twist-rate, R(0) varies by 
about a factor of 4 for the same bullet fired from different target rifles.  
 
Then,   Initial Sg = [R(0) + 1]2/[4*R(0)] 

Initial Sg ≈ (4366110/n4)/[(4179/n2) – 1] .  
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Note that the initial gyroscopic stability Sg and its stability ratio analog R 
are independent of the caliber d among rifle bullets of the same design and 
construction.  
 
We shall further explore the topic of gyroscopic stability below.  
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Tri-Cyclic Rates of Epicyclic Motion 
Right out of the muzzle, the initial spin-rate ω0 of the rifle bullet is 
 
    ω0 = 2π*V(0)/(n*d) 
  
where   n = Barrel twist-rate in calibers/turn 

d = Caliber in feet. 
 
As mentioned earlier, the spin-rate of the bullet ω(t) slows only gradually 
with ongoing time-of-flight t:  
 
    ω(t) ≈ ω0*exp[(-0.0321/(12*d))*t]  
where    d = Caliber of bullet in feet.  
 
 
We also know, as derived in Coning Theory, that 
 
    ω2(t) = q*S*d*CMα/(Ix*ω) 
 
where   q = (ρ/2)*V2 
    S = (π/4)*d2  
    Ix = m*d2 *kx2  
    d = Caliber in feet. 
 
From the physics of gyroscopes, we have the vector cross-product 
relationship for the precession rate vector ω2 (pointing along the axis of the 
bullet’s coning motion) in terms of the angular momentum vector L of the 
spinning gyroscope (bullet) and the aerodynamic overturning moment 
vector M acting upon it:  
 
    ω2 x L = M  
 
This vector relationship is derived for a “fast, heavy top” in classical 
mechanics. Any spin-stabilized rifle bullet mechanically qualifies as this 
type of gyroscope.  
 
From Coning Theory, we know that the coning axis, and thus the 
precession vector ω2, points forward along the neutral torque axis into the 
direction of approach of the apparent wind as seen by the flying bullet. For 
non-zero coning angles α, the angle between the vectors ω2 and L is just 
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the coning angle-of-attack α. The angular momentum vector L points 
forward along the spin-axis of a right-hand spinning bullet. Angular 
momentum is conserved in physics and cannot undergo any step-changes 
in magnitude or direction. Variation in L(t) must be continuous in time t.  
 
In magnitudes, this vector cross-product relationship becomes 
 
    ω2*L*Sin(α) = M  
 
In aeroballistics, the overturning moment M acting upon the flying bullet is 
given as  
 
    M = q*S*Sin(α)*d*CMα 
 
and, for small, steady angles-of-attack α,  
 
    ∂M/∂α = q*S*d*CMα 
 
Therefore, for non-zero angles of attack α, the magnitude of the coning rate 
ω2 can be written as  
 
    ω2 =  q*S*d*CMα /L 
 
or     ω2*L = q*S*d*CMα 
 
    ω2*L = ∂M/∂α. 
 
Of course, the angular momentum L of any real spin-stabilized rifle bullet 
must also be always non-zero.  
 
The direct derivation of this expression from aeroballistics and the physics 
of a fast, heavy top constitutes another validation of Coning Theory.  
 
Since we have from Tri-Cyclic Theory, 
 
   L = IX*ω = IY*(ω1 + ω2) = IY*(R + 1)*ω2  
 
we can also say,  
    (ω2)2 = q*S*d*CMα/[IY*(R + 1)].  
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This is a useful expression for finding the slow-mode coning rate ω2(t) at 
any time t during the flight of a spin-stabilized projectile based on its 
aeroballistic parameters. Only q, CMα, and R vary with time-of-flight t for 
most projectiles.  
 
Note that the slow-mode coning rate ω2(t) is essentially completely 
independent of the coning angle α as postulated in Coning Theory, even 
though for large angles-of-attack α, CMα does gradually roll-off to smaller 
values. Coning motion is an example of simple harmonic motion, and as 
such the amplitude and frequency of that motion are mutually independent 
variables.  
 
If we know the stability ratio R(t) at any time during the flight we can find 
the fast-mode nutation rate ω1 from 
 
    ω1 = R*ω2.  
 
Otherwise, we can evaluate the nutation rate ω1 at any time during the 
flight from the Tri-Cyclic relationship  
 
    ω1 = (IX/IY)*ω – ω2.  
 
Both cyclic rates, ω1 and ω2, slow monotonically with ongoing time-of-flight 
t in flat firing because the spin-rate ω(t) gradually slows monotonically and 
the stability ratio R = ω1/ω2 only very gradually increases in supersonic 
flight, monotonically as well.  
 
The stability ratio R and gyroscopic stability factor Sg increase during 
supersonic flight because the spin-rate ω(t) of the rifle bullet decays much 
more slowly than does the square of that bullet’s forward velocity V(t)2, 
which aerodynamically determines its dynamic pressure q. The 
aerodynamic forces of drag and lift and the aerodynamic overturning 
moment are each proportional to the instantaneous dynamic pressure q as 
they are modelled in aeroballistics.  
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Bullet Destabilization in the Muzzle-Blast Zone 
From the time the rifle bullet exits the crown of the muzzle until it 

commences aerodynamic ballistic flight several yards downrange after 

penetrating the muzzle-blast shockwave, it is subjected to destabilization in 

aeroballistic yaw α and yaw rate dα/dt. Even if the bullet left the muzzle of 

the rifle barrel perfectly, with α = dα/dt = 0, it can still acquire significantly 

non-zero yaw attitude and yaw-rate while transiting this muzzle-blast zone. 

Any non-zero initial aeroballistic yaw or yaw rate will then cause an 

aerodynamic jump during the first half coning cycle occurring in 

subsequent ballistic flight. These randomly oriented angular jump 

deflections eventually affect bullet impact points on any downrange target 

by reducing bullet placement accuracy and increasing shot-group sizes. 

The destabilized rifle bullet also suffers increased yaw-drag until its initial 

coning angle-of-attack damps out.  

Heavy conventional lead-cored, jacketed rifle bullets have long minimized 

this destabilization within the muzzle-blast zone by having relatively higher 

angular momentum L at launch and by incorporating convex bases and 

large-radius rear corners into their traditional designs. For a given caliber d 

of match-type rifle bullet, the radius of gyration about its spin-axis (kX) 

tends to be similar regardless of bullet design and construction. Monolithic 

copper-alloy bullets have only about 80 percent of the average material 

density ρP of similar lead-cored bullets. Therefore, they must be spun at 

least 25 percent faster to enjoy a similarly high level of angular momentum 

L right out of the muzzle of the rifle barrel.  

As will be shown in the next paragraph, the initial angular momentum L of a 

fired rifle bullet can be expressed as 

   L = IX*ω0 = 26.1156*ρP*d4 *V0/n.  

The needed higher initial spin-rate ω0 is normally accomplished by firing 

the lighter copper-alloy bullet at a higher muzzle velocity V0 and by 

reducing the number n of calibers per turn defining the twist-rate of the 

rifling.  

It might bear mentioning here that a similar bullet destabilization problem 

occurs much later in conventional forward aerodynamic flight when the 
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slowing rifle bullet enters the turbulent transonic flight regime far 

downrange as its slowing airspeed approaches Mach 1.0.  

Enhancing the bullet’s initial angular momentum L by increasing its initial 

spin-rate ω0 pays dividends in rifle bullet stability during that subsequent 

transonic flight regime as well. The spin-rate ω of the bullet slowly decays 

almost exponentially with time of flight t, so that  

   ω(t) ≈ ω0*exp[-(0.0321/d))*t] 

where the caliber d is given in inches.  

After the rifle bullet initially clears the muzzle, it is flying aerodynamically 

backwards through hot powder gases and particulates escaping the muzzle 

and passing up the fired bullet at a relative speed of about 6000 fps – V0, 

depending primarily upon the muzzle pressure behind the exiting bullet. 

The ground-speed V0 of the rifle bullet is actually increased by a few 

percent due to a forward-acting aerodynamic drag force during the short 

time Δt while it is traversing the muzzle-blast zone.  

An associated reverse aerodynamic lift force produces an overturning 

torque impulse ΔM which destabilizes the free-flying bullet in aeroballistic 

yaw and yaw-rate by about ArcTan[ΔM/L] in yaw (Δα) and by about 

ArcTan[ΔM/(L*Δt)] in yaw-rate (Δα/Δt). The radial orientation of the 

overturning torque impulse ΔM is essentially random.  

Both the overturning moment M and its impulsive form ΔM are inherently 

proportional to the 1st power of the bullet’s caliber d as formulated in 

aeroballistics. The long ogive of the rifle bullet acts as an effective lift-

minimizing afterbody design feature of that bullet while it is flying in reverse. 

However, the large diameter of the “blunt meplat” of the bullet base 

enhances its reversed coefficients of lift, drag, and overturning moment 

with the square of that effective meplat diameter, which is usually 

significant fraction f of the bullet’s caliber d, or (f*d)2. [The meplat-diameter-

squared dependence for aerodynamic drag comes directly from Bob 

McCoy’s McDRAG estimation program. We are here projecting that (f*d)2 

dependence for lift and overturning moment as well.]  

Therefore, the magnitude of the yaw-destabilizing torque impulses ΔM vary 

with the cube of bullet diameter d3, and the resulting disturbances in yaw 
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Δα and in yaw-rate Δα/Δt are each inversely proportion to the 1st power of 

the projectile caliber, or 1/d.  

Two bullet design approaches come to mind for minimizing the effective 

aerodynamic diameter f*d of the bullet base while it is flying backwards 

without causing problems during subsequent forward aerodynamic flight. 

The base diameter f is about 0.842 calibers for many ULD and ELR rifle 

bullet designs.  

One possible bullet design modification is to bevel slightly (but not radius) 

the rear corners of the boat-tailed bullet base. A bevel angle of 45 degrees 

off-axis would still allow the turbulent boundary layer flowing down the boat-

tail surface to detach cleanly in forward aerodynamic flight, while reducing 

the effective aerodynamic meplat diameter f*d in reversed flight. Radiusing 

this rear corner instead would tend to pull that turbulent boundary layer 

around the rear corner in forward flight before it eventually detached, 

leading to increased alternate shedding of vortices into the turbulent wake 

of the forward flying bullet, destabilizing it in ballistic flight and increasing its 

base drag.  

Another possible bullet design approach for reducing the large effective 

base diameter f*d is to make the base of the rifle bullet convex with a 

generating radius of 0.65 calibers. [This value comes from a 1966 NASA-

Langley subsonic wind tunnel study (NASA TN D-3388) of blunt elliptical 

ogives. This radius value is the maximum radius of curvature at the center 

of the nose, on the axis of symmetry of the bullet, for the most blunt of 

elliptical nose shapes which does not increase measured subsonic 

aerodynamic drag above that of a full hemispherical nose shape, r = 

0.50*d.]  

Both design approaches could be used simultaneously to reduce further 

the overturning torque impulse ΔM during reversed flight through the 

muzzle-blast zone without interfering with its forward-flight aerodynamics.  

It should be pointed out here that a well-designed, effective muzzle brake 

or suppressor can significantly reduce the muzzle-blast destabilization of 

rifle bullets fired through them. These attached muzzle devices accomplish 

this by bleeding off the muzzle pressure in a controlled fashion while 

preventing the rifle bullet’s ever having to “fly backwards” aerodynamically 

through the escaping high-pressure powder gases. A series of close-fitting 



11 
 

metallic baffles is used in either type of add-on muzzle device to prevent 

reversed aerodynamic flight of the rifle bullet from occurring while the 

muzzle pressure is being bled off. The baffle holes should be well centered 

on the bore and have no more than 0.010-inch radial clearance around the 

groove-diameter portion of the bullets fired through them.  

In practice, long-range LR and extreme long-range ELR target rifles in 

calibers 338 through 510 normally utilize muzzle brakes or suppressors to 

control felt recoil during sustained firing from the shoulder. If properly 

designed, these devices inherently control bullet destabilization in the 

muzzle-blast zone. Target rifles made in calibers 224 through 308 often do 

not utilize muzzle brakes or suppressors for recoil control. Target bullets 

made in these smaller calibers especially need the design modifications 

mentioned above to control bullet destabilization within the muzzle-blast 

zone because they are inherently more easily destabilized than their larger-

caliber cousins.  

In the absence of any muzzle attachment, these smaller-caliber target rifles 

suffer accuracy losses proportional to (0.330/d) due to aerodynamic jump 

in subsequent ballistic flight, as discussed below. Group sizes for 6.5 mm 

bullets, for example, should be expected to exceed those of similar 338-

caliber bullets of any given design by a factor of 1.29 at any firing distance.  

 



12 
 

Effects of Caliber on Bullet Stability 
We should point out the rifle bullet’s significant caliber-dependence in the 
magnitude of the yaw destabilization Δα to be expected in the muzzle-blast 
zone:  
 
    Δα = Tan-1[ΔM/L] ≈ ΔM/L  
 
As shown above, the destabilizing torque impulse ΔM increases in 
magnitude with the cube of bullet caliber d3.  
 
The axial rigidity of the flying bullet is determined by the magnitude of its 
angular momentum vector L. The value of L determines how much 
increase in coning angle Δα is incurred for any given amount of overturning 
moment torque M integrated over the time Δt of its application; i.e., for any 
given yaw-destabilizing torque impulse ΔM applied to the bullet in flight.  
 
There is significant caliber-dependence in the bullet’s angular momentum 
L, in both its second moment IX and in its initial spin-rate ω0 components:  
 
    L = IX*ω 
 
The magnitude of the bullet’s second moment of inertia IX about its principal 
longitudinal spin-axis (its x-axis) can be expressed as:  
 
    IX = m*d2 *kX

2.  
 
The spin-axis of the bullet is a principal axis of rotation because it is the 
axis of minimum possible second moment of inertia for its mass 
distribution. Any axis through the center of mass of the bullet resulting in an 
extremum (either a maximum or a minimum) of its second moment is a 
principal axis of rotation.  
 
This second moment of inertia IX about the bullet’s principal axis is often 
given in units of grain-inch2. For a typical monolithic extreme long-range 
(ELR) rifle bullet having an average density ρP in grains/cubic inch, a 
volume of 3.15 cubic calibers d3, and with its reference diameter d now 
given in inches:  
 
    m = 3.15*ρP*d3       (in grains).  
 



13 
 

A grain is actually 1/7000 of a pound, which is properly a unit of force 
(weight). It is common when working in imperial units to use pounds to 
quantify mass, as long as that convention is well understood. The imperial 
unit of mass is properly the slug, which weighs 32.174 pounds in a 
gravitational field of 32.174 feet/second2. The mass of one slug is 14.5939 
kilograms.  
 
Since the radius of gyration kX of the mass distribution of the bullet about 
its spin-axis in calibers (here used as dimensionless canonical units) is 
always very nearly 0.3316 calibers for long-range monolithic rifle bullets,  
 
    IX = m*d2 *kX

2  
IX = 3.15*(0.3316)2 *ρP*d5  
IX = 0.34637*ρP*d5 

with   d = Reference diameter (caliber) in inches.  
 
Thus, all else being equal, IX varies directly with the 5th power of caliber d5.  
 
Just out of the muzzle, the initial spin-rate ω0 of the bullet is given in 
radians/second by: 
 
   ω0 = 2π*V0/Tw = 2π*V0*12/(n*d).  
 
As mentioned earlier, the subsequent spin-rate ω(t) of the bullet slows only 
gradually, almost exponentially with time-of-flight t.   
 
So, the spin-rate ω(t) of the rifle bullet typically varies inversely with its 
caliber d-1, even when fired with the same initial velocity V0 and, as we 
showed above, with the same initial gyroscopic stability Sg as with similar 
bullets of other calibers.  
 
Combining these caliber-dependence expressions, the initial magnitude of 
the angular momentum L of the rifle bullet is given by:  
 
   L = IX* ω0 = 26.1156*ρP*d4 *V0/n.  
 
So, the initial angular momentum L of the rifle bullet varies directly with the 
4th power of its diameter d whenever the bullet design, its material density, 
its muzzle velocity, and the rifling helix-angle (180/n in degrees) are each 
held fixed in studying caliber-effects in isolation.  
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Since IX is normally invariant for a fired rifle bullet in ballistic flight, the 
magnitude of its in-flight angular momentum L varies directly with the 
gradually slowing spin-rate ω of the bullet; i.e., also decreasing almost 
exponentially with time of flight t.  
 
Differing calibers of rifle bullets of similar design and materials, fired at the 
same muzzle velocity V0 from rifled barrels having the same helix-angle 
(180/n, in degrees), will always have angular momentum L proportional to 
the 4th power of their caliber d4 at corresponding points throughout their 
flights.  
 
All else being equal, larger-caliber rifle bullets are inherently much more 
rigid axially in flight than smaller-caliber bullets of similar design.  
 
Since the destabilizing torque impulse ΔM expected in the muzzle-blast 

zone was earlier shown to increase with the cube of the bullet’s caliber d3, 

the expected amount of yaw destabilization Δα = Tan-1[ΔM/L] in the 

muzzle-blast zone should vary inversely with caliber d-1. Initial 

aerodynamic drag increases are modeled as proportional to (Δα)2 and that 

drag increase would then vary inversely with the square of caliber d-2.  

As mentioned above, in the absence of any muzzle attachment effectively 

controlling muzzle-blast destabilization for large-caliber bullets, smaller-

caliber target rifles suffer accuracy losses proportional to (0.330/d) due to 

aerodynamic jump in subsequent ballistic flight, as discussed below. Group 

sizes for 6.5 mm bullets, for example, should be expected to exceed those 

of similar 338-caliber bullets of any given design by a factor of 1.29 at any 

firing distance.  
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Initial Dynamic Stability Considerations 
Dynamic stability (Sd) deals with the rates of change in the angular 
amplitudes of the coning and nutation motions of the spin-axis of the bullet 
in flight. The slow-mode “coning motion” of the CG of the spinning bullet 
around the mean trajectory is a type of damped harmonic motion. If the 
coning angle α, for example, decreases in size with ongoing flight time t, 
that slow-mode motion is said to be “damped.” If α(t) increases in size or 
remains constant with ongoing time-of-flight, it is termed an “undamped” 
motion. Ballisticians have long modeled this damping as exponential in 
downrange flight distance (s) measured in projectile calibers (d) of travel 
distance with fast-mode and slow-mode damping factors λF and λS, 
respectively, given in inverse calibers.  
 
The rates, ω1 and ω2, of the two gyroscopic motions of the bullet’s spin-
axis direction are fixed by the physics of gyroscopic motion, and they are 
not affected in any way by the dynamic damping mentioned above. 
However, each of the two gyroscopic rates, ω1 and ω2, decreases 
monotonically over time of flight t as the spin-rate of the bullet ω(t) in 
radians per second slows (very nearly) exponentially with time t.  
 
  ω(t) = (Iy/Ix)*(ω1 + ω2) ≈ ω(0)*exp[-(0.0321/d)*t]  
 
with the caliber d given here in inches.  
 
The fast-mode and slow-mode exponential damping factors used herein 
are λ1 and λ2, respectively, in inverse seconds, such that, for example, the 
slow-mode coning angle amplitude α is given as a function of flight time t 
by:   
 
    α(t) = α(0)*exp[-λ2*t] .  
 
The damping with λ1 of the fast-mode is modeled similarly, but because 
that nutation damping seems never to be a problem in rifle shooting, we 
shall ignore it for a time here. With regard to rifle bullets, the term dynamic 
stability really refers to the damping, λS or λ2, of the slow-mode coning 
angle α.  
 
Note that in accordance with modern engineering practice, we have 
reversed the signs of the damping factors λ1 and λ2 from those used in 
classic aeroballistics (λF and λS, respectively), and also that they are now 
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specified per unit of time-of-flight t (in seconds) rather than per calibers d 
of path distance s travelled. Thus, when λ2 ˃ 0, the coning motion is 
damped, and for λ2 ≤ 0, the coning angle α is undamped,  
 
and   λ1 = - λF*V/d (in inverse seconds) 

λ2 = - λS*V/d (in inverse seconds)   
 

where  V = V(t) = the instantaneous airspeed of the bullet, and 
d = Caliber in feet.  

 
If either damping factor, λ1 or λ2, were to go negative for some type of 
bullet and remained there for a significant time-of-flight t, the angular 
amplitude of either the fast-mode nutation or the coning angle α would 
increase without bound. When, for example, the amplitude of the coning 
angle α approaches 90 degrees, we would certainly call that a bullet failure 
in dynamic stability.  
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Frictional Energy Loss of the Bullet 
Yaw-drag additionally retards the forward motion of the bullet over its zero-
yaw retardation due to its flying with the coning angle α as its long-term 
aerodynamic angle-of-attack. For a dynamically stable rifle bullet, some 
small fraction e of its kinetic energy of forward motion is continuously being 
bled off to reduce the amplitude α of that bullet’s coning motion. In the 
absence of fast-mode nutation, the fraction e of that yaw-drag frictional 
energy loss goes toward frictional damping of the slow-mode coning 
motion. The frictional damping of the coning motion is not attributable to 
the orbital velocity of the CG of the bullet around its mean trajectory, but is 
due only to the forward motion of the coning bullet and to the coning angle 
as an aerodynamic angle-of-attack α.  
 
Another small fraction k of the bullet’s kinetic energy is also used to re-
orient the axis of the coning motion in response to any step-change in the 
direction of approach of the apparent wind experienced by the flying bullet.  
 
Since the CG of even a marginally stable bullet shows no measurable 
motion at the fast-mode nutation rate, there is almost no kinetic energy 
associated with that type of gyroscopic motion of the bullet’s spin-axis 
direction or any associated fast-mode coning motion of the bullet’s CG.  
 
As kinetic energy is extracted from the orbital motion of the CG around its 
mean trajectory at the gyroscopic precession (or coning) rate ω2, the orbital 
radius r of that orbit must decrease correspondingly to a lower orbital 
potential energy state, along with its  associated coning angle α, with r = 
D*Sin(α). This is the frictional damping mechanism which reduces the 
coning angle α over the distance s traversed by the bullet along the mean 
trajectory or, alternatively, over its time-of-flight t at airspeed V(t).  
 
Aerodynamic drag itself is a frictional force in that it can only act to oppose 
or retard bullet motion through the air. The total decrease in the bullet’s 
kinetic energy due to this retardation of forward motion is caused only by 
the force of aerodynamic drag FD experienced by that bullet at any time 
during its flight. The deceleration of the bullet is FD/m at any point during its 
ballistic free flight. The direction of the aerodynamic drag force vector FD is 
always “downwind” in the direction of movement of the apparent wind 
airstream approaching the bullet, and this direction is independent of the 
orientation of that bullet. Except for damping or re-orienting the coning 



18 
 

motion and any nutation of the bullet, the remaining frictional energy loss is 
dissipated as heat energy. We shall explore this energy relationship below.  
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Additional Gyroscopic Stability Considerations 
Various estimators for calculating the required rifling twist-rates for 

adequate gyroscopic stability Sg for rifle bullets have been used since the 

Greenhill Formula of the mid-1800’s. We now also use Don Miller’s 

formulation for VLD-type bullets and Bob McCoy’s McGYRO calculations 

developed for artillery projectiles. A common feature of these estimators is 

that they all rely heavily upon the bullet length L in calibers as a basic 

slenderness ratio of the projectile. Some formulations also adjust for 

muzzle velocity, air density, and the average material density of the 

projectile.  

Ideas are currently changing about what values of Sg constitute desired 

and adequate initial gyroscopic stability, especially in the flat-firing of rifles 

to extended ranges greater than 1000 yards—Extreme Long Range, or 

ELR shooting. Formerly, we considered an initial Sg of 1.2 to 1.4 to be 

adequate for best short-range rifle accuracy. We now realize the 

advantages of reducing aerodynamic drag in early flight by providing our 

conventional jacketed, lead-cored rifle bullets with an initial Sg of at least 

1.5, as recommended by Bob McCoy and Bryan Litz. Riflemen are 

currently learning to launch their new monolithic copper-alloy ultra-low-drag 

(ULD) bullets with an initial Sg of 2.5 to 3.5 for best results in ELR shooting. 

Achieving this initial Sg typically requires a rifling twist-rate of about 20 

calibers per turn for monolithic ULD bullets of about 5.5 calibers in length 

L. The resulting higher bullet spin-rates ω0 at high muzzle speeds V0 are 

not compatible with the use of conventional jacketed, lead-cored match rifle 

bullets. The jacketed bullets fail mechanically and disintegrate in mid-air.  
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New Analytical Calculations 
Munk’s Equation from early aerodynamics allows us to estimate the 

overturning moment M acting upon a slender solid-body-of-revolution in a 

laminar flow-field. Munk was a student of Prandtl in Germany in the early 

20th Century. In our terms, Munk’s Equation is 

   M = q*Sin(2*α)*(Vol – S*Xcg) 

where  Vol = Volume of projectile 

   Xcg = Distance from nose to CG of projectile.  

The doubling of the aerodynamic angle-of-attack α comes directly from 

wind-tunnel observations of attached surface telltales (strips of yarn) for 

solids-of-revolution in laminar flow-fields. ULD rifle bullets fly with attached, 

laminar boundary layer flow-fields over their ogives at supersonic and 

subsonic airspeeds.  

A paper published in 1989 by Ing. Dr. Beat P. Kneubuehl of Thun, 

Switzerland, entitled “What is the maximum length of a spin stabilized 

projectile?,” details an analytical procedure for calculating the important 

aeroballistic parameters of Iy/Ix ratio, CMα, and initial Sg from basic data 

for any reasonable projectile having a homogeneous mass distribution. I 

discovered this little gem of ballistics papers on Research Gate.  

For a simple cone-on-cylinder projectile model, Kneubuehl analytically 

calculates the mass properties and, from Munk’s Equation, the aeroballistic 

moment coefficient CMα of the projectile: 

   Wt(calc) = (π/4)*ρp*d3 *L*(1 – 2*h/3) grains 

   Ix = (π/32)*ρp*d5 *L*(1 – 4*h/5) grain-inches2 

   Iy = (π/960)*ρp*d5 *L*f1(L,h)  grain-inches2 

   Iy/Ix = f1(L,h)/[30*(1 – 4*h/5) 

   CMα = (∂M/∂α)/(q*S*d) = L*f2(h)  

where Wt(calc) = Calculated weight of projectile in grains 

  d = Reference Diameter of bullet in inches = 1.0 caliber 

ρp = Density of monolithic bullet in grains/cubic inch  
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  L = Bullet length in calibers (including full-length nose) 

  L = Actual Bullet Length - LN + LFN  

  LFN = Full Length of the non-truncated ogival Nose 

  LN = Truncated Nose Length 

h = LFN/L  

f1(L,h) = 15 – 12*h +L2 *(60 – 160*h +180*h2 – 96*h3 + 19*h4)/(3 – 2*h)  

and  f2(h) = (18 – 24*h + 7*h2)/(18 – 12*h).  

The initial gyroscopic stability Sg of this cone-on-cylinder projectile model 

can then also be analytically calculated as 

 Sg = 0.300*(ρp/ρ)*[Tan2(180/n)]*(5 – 4*h)2/[f1(L,h)*f2(h)] 

where  ρ = Ambient air density 

   n = Rifling twist-rate in calibers/turn.  

The angular argument of the tangent function is just the helix angle of the 

rifling spiral within the barrel given by 180/n in degrees or π/n in radians.  
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Adjusting the Swiss Formulation for ULD Rifle Bullets 
The Swiss paper is primarily concerned with artillery shell ballistics. We 

have enough data from designing solid monolithic ULD rifle bullets to 

customize these analytical calculations for those and any similar rifle bullets 

of solid construction with homogeneous material density.  

We can adjust f2(h) by a factor of 2.62/3.41 (from data in the Swiss paper) 

to bring the analytically calculated overturning moment coefficient CMα into 

agreement with wind-tunnel data measurements for the cone-on-cylinder 

rifle bullet models, explicitly at Mach 2.5 (and higher launch speeds), but 

somewhat applicable for slower supersonic airspeeds: 

     f2A(h) = (2.62/3.41)*f2(h) 

CMα = L*f2A(h).  

These CMα adjustment values are for a 4.5-calibers long projectile model 

with h = 0.57 (which is measured for our Mark II ULD bullets) at Mach 2.5. 

For a given rifle bullet, the aeroballistic overturning moment coefficient CMα 

tends to be approximately the same value for all high supersonic and 

subsonic airspeeds, but varies up and down slightly, especially around the 

transonic region.  

The actual weight Wt of the a solid monolithic ULD rifle bullet in any caliber 

is 1.1418 times the analytically calculated weight Wt(calc) for the 

corresponding cone-on-cylinder model of that same rifle bullet. The ULD 

bullet design utilizes either a secant ogive with RT/R = 0.500 or a Sears-

Haack lowest-drag nose shape and also features an aerodynamically 

effective boat-tail of about 0.7 calibers in length. Since we know both of 

these weights, we can use their ratio Wt/Wt(calc) to adjust the analytically 

calculated ratio of second moments Iy/Ix:  

   {Iy/Ix}A = 1.14180.894 *f1(L,h)/[30*(1 – 4*h/5) 

{Iy/Ix}A = 1.12586*f1(L,h)/[30*(1 – 4*h/5).   

This adjustment brings these analytical calculations of Iy/Ix into agreement 

with our numerical integrations of these mass properties for a wide array of 

different solid monolithic ULD rifle bullets.  

We associate this weight-ratio adjustment with f1(L,h), and adjust that 

analytical function accordingly:   
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    f1A(L,h) = 1.12586*f1(L,h) 

so that   {Iy/Ix}A = f1A(L,h)/[30*(1 – 4*h/5)].  

 

We can then separately adjust the individually calculated second moments 

of inertia, Ix and Iy, by the factor 

    1.14181.037 = 1.147416 

so that   

{Iy}A = 1.147416*(π/960)*ρp*d5 *L*f1A(L,h)  

{Ix}A = 1.147416*(π/32)*ρp*d5 *L*(1 – 4*h/5)  

with each second moment of inertia given in grain-inches2.  

Note that the ratio Iy/Ix remains as previously adjusted. These adjusted 

analytical calculations of the second moments of inertia, Iy and Ix, then agree 

closely with corresponding numerically integrated values for solid monolithic 

ULD rifle bullets of all calibers.  

Finally, we can get good agreement with McGYRO initial Sg estimates and 

qualified agreement with Don Miller’s VLD Sg estimates for solid monolithic 

ULD rifle bullets if we replace the initial constant factor of 0.300 in the Sg 

formulation with 0.2339. This formulation is optimized for rifle bullets of 30- 

to 50-caliber. The adjusted analytic formulation of initial Sg then becomes 

{Sg}A=0.2339*(ρp/ρ)*[(5 – 4*h)*Tan(180/n)]2/[f1A(L,h)*f2A(h)]  

Both the air density ρ and projectile density ρp are used explicitly here, but 

no separate correction for muzzle velocity variations is available. This 

formulation calculates only the initial Sg, and does not work later in the flight.  

We can invert this relationship to find the rifling twist-rate n in calibers per 

turn which will produce a desired initial gyroscopic stability Sg for this bullet.  

 Tan2(π/n) = Sg*[f1A(L,h)*f2A(h)]/[0.2339*(ρp/ρ)*(5 – 4*h)2]  

 Tan(π/n) = SQRT{Sg*[f1A(L,h)*f2A(h)]/[0.2339*(ρp/ρ)]}/(5 – 4*h)  

 π/n = ATAN{SQRT{Sg*[f1A(L,h)*f2A(h)]/[0.2339*(ρp/ρ)]}/(5 – 4*h)}  

 n = π/ATAN{SQRT{Sg*[f1A(L,h)*f2A(h)]/[0.2339*(ρp/ρ)]}/(5 – 4*h)}.  
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Dynamic Stability 
In classic aeroballistics, the dynamic stability of a spin-stabilized projectile 

is given as 

   Sd = 2T/H = 2(PT)/(PH) 

   Sd = 2(ω1λ2 + ω2λ1)/[(ω1 + ω2)(λ1 + λ2)]  

The conditions for simultaneous gyroscopic and dynamic stability are given 

as  

   Sg ˃ 1/[Sd(2 – Sd)] ˃ 1  

and    0 < Sd < 2  

As Sd approaches 0, the slow-mode (coning) motion becomes less 

damped, and as Sd approaches 2, the fast-mode (nutation) motion 

becomes less damped.  

Noting the symmetry about Sd = 1, we shall formulate a new expression for 

(Sd – 1) which is symmetric about zero. After some algebra, we find:  

  Sd – 1 = [(ω1 - ω2)/(ω1 + ω2)][(λ2 – λ1)/(λ2 + λ1)]  

  Sd – 1 = [(R - 1)/(R + 1)][(λ2 – λ1)/(λ2 + λ1)] 

with   -1 < (Sd – 1) < +1 (for dynamic stability). 

We know that ω1 ˃ ω2 because ω1 = ω2 is the lower boundary condition on 

ω1 for gyroscopic stability where Sg = R = 1.  

 

Now suppose that the damping factors are such that the amplitude of each 

type of angular motion is reduced by the same damping fraction during 

each cycle of its motion. In this case, we would have 

    λ1/ω1 = λ2/ω2 

or    λ1 = (ω1/ω2)*λ2 = R*λ2. 

Then, after more algebra 

    Sd – 1 = - [(R – 1)/(R + 1)]2 

or    Sd = 1 - [(R – 1)/(R + 1)]2. 
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In this special case, the formulation shows that  

     0 < Sd < 1  

whenever the gyroscopic stability ratio R > 1, and the fast-mode motion 

(nutation) is certainly always well damped.  

The rifle bullet motions observed in 6 degree-of-freedom flight simulations 

often tend to behave in just about this way, and there might even be sound 

physical reasons behind this type of behavior. With initial R-values of about 

5 to 10 for rifle bullets which are gyroscopically well stabilized with initial Sg 

from 1.8 to 3.0, the fast-mode cycles occur just R-times more frequently in 

time than do the coning cycles. With the λ1 fast-mode damping factor also 

R-times larger than λ2, the nutations would damp to insignificance R2-times 

more quickly over flight time than does the coning motion in this special 

case. No lack of adequate fast-mode damping λ1 seems ever to be 

observed for rifle bullets fired with adequate initial gyroscopic stability Sg.  

The table below shows this special case relationship for values of R from 1 

to 37, where Sg = 9.757. Note that the conditions for both gyroscopic and 

dynamic stability are continually met in this special case. As R continually 

increases during the flight, the dynamic stability Sd decreases toward 0, or 

slow-mode instability. This indicates that the amplitude of the slow-mode 

coning motion α(t), while becoming less damped as R increases, is never 

completely undamped in this special case.  

 

       

 For Constant Damping Ratio per Cycle:  λ1/λ2 = ω1/ω2 

   Sd = 1 - ((R - 1)/(R + 1))^2   

       

 Sg R Sd 1/(Sd*(2-Sd)) 1/Sg< Sd*(2-Sd) 

 1.000 1.000 1.0000 1.0000 1.0000 1.0000 

 1.125 2.000 0.8889 1.0125 0.8889 0.9877 

 1.333 3.000 0.7500 1.0667 0.7500 0.9375 

 1.563 4.000 0.6400 1.1489 0.6400 0.8704 

 1.800 5.000 0.5556 1.2462 0.5556 0.8025 

 2.042 6.000 0.4898 1.3519 0.4898 0.7397 

 2.286 7.000 0.4375 1.4629 0.4375 0.6836 

 2.531 8.000 0.3951 1.5772 0.3951 0.6340 

 2.778 9.000 0.3600 1.6938 0.3600 0.5904 
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 3.025 10.000 0.3306 1.8120 0.3306 0.5519 

 3.273 11.000 0.3056 1.9314 0.3056 0.5177 

 3.521 12.000 0.2840 2.0518 0.2840 0.4874 

 3.769 13.000 0.2653 2.1729 0.2653 0.4602 

 4.018 14.000 0.2489 2.2945 0.2489 0.4358 

 4.267 15.000 0.2344 2.4165 0.2344 0.4138 

 4.516 16.000 0.2215 2.5389 0.2215 0.3939 

 4.765 17.000 0.2099 2.6617 0.2099 0.3757 

 5.014 18.000 0.1994 2.7846 0.1994 0.3591 

 5.263 19.000 0.1900 2.9078 0.1900 0.3439 

 5.513 20.000 0.1814 3.0312 0.1814 0.3299 

 5.762 21.000 0.1736 3.1547 0.1736 0.3170 

 6.011 22.000 0.1664 3.2784 0.1664 0.3050 

 6.261 23.000 0.1597 3.4021 0.1597 0.2939 

 6.510 24.000 0.1536 3.5260 0.1536 0.2836 

 6.760 25.000 0.1479 3.6500 0.1479 0.2740 

 7.010 26.000 0.1427 3.7740 0.1427 0.2650 

 7.259 27.000 0.1378 3.8981 0.1378 0.2565 

 7.509 28.000 0.1332 4.0223 0.1332 0.2486 

 7.759 29.000 0.1289 4.1465 0.1289 0.2412 

 8.008 30.000 0.1249 4.2708 0.1249 0.2341 

 8.258 31.000 0.1211 4.3951 0.1211 0.2275 

 8.508 32.000 0.1175 4.5195 0.1175 0.2213 

 8.758 33.000 0.1142 4.6439 0.1142 0.2153 

 9.007 34.000 0.1110 4.7684 0.1110 0.2097 

 9.257 35.000 0.1080 4.8928 0.1080 0.2044 

 9.507 36.000 0.1052 5.0174 0.1052 0.1993 

 9.757 37.000 0.1025 5.1419 0.1025 0.1945 
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Achieving Minimum Coning Angle Flight 
David Tubb launched our new 225-grain copper 338-caliber ULD bullets in 

his 1000-yard testing with an initial R-value of 8.86 (Sg = 2.75) from his 

7.5-inch twist Schneider 338 barrel. The values of R and Sg could only 

have increased during their supersonic flight to his 1000 yard target. The 

resulting rather surprisingly high ballistic coefficient BC(G1) measurement 

of 0.794 for an average airspeed of Mach 2.46 indicates that these bullets 

were flying with a “minimum coning angle” motion (α ≈ ΔΦ << 0.1 degree) 

during all (or most) of their 1000-yard flights and certainly that they were 

dynamically stable (λ2 ˃ 0) all the way from launch to that target distance.  

Bob McCoy’s McDRAG program estimated a BC(G1) value of 0.703 for this 

bullet at Mach 2.5. David was able to measure the aerodynamic drag of 

these test bullets due solely to their zero-yaw coefficient of drag CD0. I 

propose that we term this flight mode “hyper-stable flight.” Otherwise, the 

bullet drag measurements from the usual firing tests (as calculated in 

McDRAG) apparently contain significant yaw-drag contributions. The 

bullet’s actual coning angle-of-attack α is typically difficult and expensive to 

measure in flight.  

For our 338-caliber prototype 225-grain ULD bullets launched with an initial 

Sg = 2.75, David Tubb measured an average BC(G1) which was 12.4 

percent higher than calculated by McDRAG at an average airspeed of 

Mach 2.46. David repeated these measurements for a 242-grain version of 

this same bullet, launched with an initial Sg = 2.44, and he measured an 

average BC(G1) which was 11.2 percent higher than predicted by 

McDRAG at Mach 2.44 average airspeed. The 225-grain version had 17 

grains of copper removed by base-drilling in order to increase their initial 

Sg values when fired from rifles made with slower-twist barrels. This data 

indicates that the bullets fired with initial Sg = 2.75 were significantly more 

“hyper-stable” than those fired at only Sg = 2.44. More test measurements 

should indicate the true threshold in initial gyroscopic stability Sg to achieve 

truly hyper-stable flight right out of the muzzle with these copper ULD 

bullets.  

In minimum coning angle (hyper-stable) flight, the increase ΔΦ in 

coning angle α due to the gravitational downward curving of the mean 

trajectory during each half coning cycle is closely matched by the 
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exponential slow-mode damping λ2 of the coning angle α during that same 

half coning cycle:  

   α ≤ (α + ΔΦ)*exp[-λ2*π/ω2]  

This condition quickly produces a steady-state coning angle of α ≥ ΔΦ << 

0.1 degree whenever λ2 ≥ [λ2]Min where:  

    [λ2]Min = (ω2/π)*ln[(α + ΔΦ)/α]  

or   [λ2]Min = 2*f2*ln[(α + ΔΦ)/α]. 

As the damped coning angle α approaches the change in flight path angle 

ΔΦ during this half coning cycle as its lower limit,   

   ln[(α + ΔΦ)/α] ≤ ln[2] = 0.693147. 

Then, for the 225-grain bullet test-fired, for which the initial coning 

frequency f2 and the initial coning period T2 are given by 

  f2 = [(12*3378 fps/7.5 in.)/12.1227]/9.86 = 45.22 hz 

  T2 = 1/f2 = 1/45.22 = 22.114 milliseconds 

where   Iy/Ix = 12.1227 

    R + 1 = 9.86. 

Then   [λ2]Min ≤ 2*f2*ln(2) = 62.7 seconds-1  

If λ2 = [λ2]Min, the time constant for damping reduction of the size of the 

coning angle α by a factor of 1/e = 0.3679 is 15.95 milliseconds, or 0.7213 

coning cycles (or 53.9 feet of early flight).  

An under-damped driven linear system continues oscillating at its driving 

frequency, but at a reduced amplitude. An over-damped driven linear 

system stops oscillating at that frequency, but never quite achieves 

equilibrium either. A critically damped linear system stops its oscillation as 

quickly as possible.  

Here, we are dealing with a harmonic 2-dimensional rotational motion of 

the CG of the coning bullet. Only the radial angular magnitude α of this 

coning motion is being frictionally damped with ongoing time-of-flight or 

flight distance. The rotational velocity of the coning bullet is not the cause 
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of the frictional damping of the coning angle α. The rotational rate of the 

coning motion ω2 is completely independent of its amplitude α.  

Aside: 
But is this damping of the coning angle α really independent of the orbital 

velocity v of the CG of the bullet?  

   v = r*ω2 = D*Sin(α)*ω2 ≈ α*D*ω2 

The coning bullet is moving laterally (sideways) through the air at a 

subsonic airspeed v and presenting its largest possible cross-sectional 

area to that airflow. The frontal cross-sectional area is  

     S = (π/4)*d2  

If a rifle bullet has a volume Vol of about 3.15 cubic calibers, as with 

many monolithic VLD and ULD bullets, its minimum side aspect area Sa 

would be La*d, where La is given by 

   La = Vol/S = 3.15*d3/[(π/4)*d2] = (12.6/π)*d = 4.011*d 

and    Sa = La*d = 4.011*d2 = 5.107*S. 

If the subsonic coefficient of drag CD for this rifle bullet is about 0.100, the 

drag force FDC due to this coning motion would be  

  FDC = (ρ/2)*[v2 ]*Sa*CD = (ρ/2)*[α2 *(D*ω2)2 ]*0.511*S  

The orbital kinetic energy loss per half coning cycle ΔEC would be  

  ΔEC = FDC*π*r = π*(ρ/2)*α3 *D3 *(ω2)2 *0.511*S 

But, as will be shown later, the loss in orbital potential energy with α per 

half coning cycle is  

    ΔEC = [m*(D*ω2)2]*α*Δα. 

Setting these energy losses equal, we have 

   Δα = α2 *(π/m)*(ρ/2)*D*0.511*S 

   Δα = α*[1 – exp(-λC*T2/2)] 

   exp(-λC*T2/2) = 1 - α*[(π/m)*(ρ/2)*D*0.511*S] 

   λC = (-2*f2)*ln{1 - α*[0.802*(ρ/m)*D*S]}.  
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   λC = (-2*f2)*ln{1 - α*[0.630*(ρ/m)*d2 *D]}. 

For a 250-grain 338 bullet in an ICAO sea-level atmosphere (ρ = 

0.0764742 lbm/ft3),with f2 ≈ 45 hertz, D ≈ 4*d, and α ≈ 0.100 radians, 

   λC = (-2*f2)*ln{1 - α*[0.630*(ρ/m)*D*d2]}. 

   λC = -90 hz*ln[1 – 0.100*[0.630*2.1413*4*(0.028167)3] 

   λC = -90 hz*ln[1 – 0.000012058] 

   λC = -90 hz*[ -0.000012058] = 0.0010852 seconds-1 .  

Critical damping would have a time constant of 921.5 seconds (or 15.36 

minutes of flight time) at this tiny λC damping rate.  

Since we are considering flight times of only a few seconds, we should be 

justified in saying that the damping factor λ2 affects only the angular size α 

of the coning motion and not the orbital motion of the CG. [End of aside.] 

    

Minimum coning angle flight is achieved earlier in the bullet’s flight when 

the bullet is perfectly launched with zero initial yaw and yaw-rate, when the 

initial spin-rate of the bullet is very high (≈ 6000 revolutions/second), 

when the bullet design is easier to stabilize gyroscopically (initial Sg ≈ 3.0), 

when crosswinds are light and steady, when the density of the ambient 

atmosphere is relatively low, and when bullet’s launch velocity is very high.  

Importantly, the coning motion of the bullet during this “minimum coning 

angle” hyper-stable flight mode still allows the rotational cancellation of the 

aerodynamic lift force acting on the bullet due to any crosswinds. Windage 

corrections would have to be at least an order of magnitude greater if this 

were not the case. Windage corrections remain attributable only to the 

aerodynamic drag force as first formulated by DeDion in 1859.  

Ordinary outdoor test-firing for most bullets allows measurement of a total 

aerodynamic drag force which includes a significant yaw-drag component 

due to coning angles-of-attack often in the 2 to 10-degree range. This 

coning angle is effectively a long-term aerodynamic angle-of-attack, but 

these small attitude angles are difficult and expensive to measure in flight, 

especially in outdoor firing tests. We understand that firing-test measured 

aerodynamic drag is reduced somewhat merely by increasing the fired 
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bullet’s initial gyroscopic stability from a marginal Sg of 1.4 to a nominal Sg 

of 1.5. It stands to reason that increasing the initial Sg a bit more might 

decrease measured aerodynamic drag even more.  

Hyper-stabilizing our test-fired bullets with an initial Sg of 2.75 in David 

Tubb’s test-firings effectively allowed their pure CD0 aerodynamic drag 

coefficient to be measured for the average Mach-speed over the entire 

flight to the target (Mach 2.46). However, increasing initial Sg even further 

should not be expected to provide very much (if any) additional reduction in 

measured aerodynamic drag below the CD0 coefficient for zero-yaw flight.  
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Energy Considerations 
The total energy TE of the fired rifle bullet which is conserved in ballistic 

flight is  

   TE = E + EC + PC + mgh + Heat 

where  E = Kinetic energy of the bullet due to forward motion 

   EC = Kinetic energy of the coning motion 

   PC = Potential energy of the coning motion 

   mgh = Gravitational potential energy of bullet 

   Heat = Dissipated energy absorbed by surroundings. 

Here, we are only interested in the first three energy terms on the right-

side, since the height h is essentially constant in flat-firing and the eventual 

heating of the environment cannot be measured.  

We can gain additional insight into this steady-state “minimum coning 

angle” hyper-stable flight by looking at the bullet’s loss of kinetic energy E 

in flight. Let us say that at any time t during flight, the loss in kinetic energy 

ΔE over the small time interval Δt is governed by the Equations of Motion 

as: 

    E(t + Δt) = E(t) – ΔE(Δt)  

and    ΔE(Δt) = FD*Δs = FD*V*Δt 

where FD is the total aerodynamic force of drag and Δs is the path length 

(in feet) travelled during the small time-interval Δt seconds.  

In particular, we are interested in the loss in kinetic energy ΔE during any 

particular half coning cycle where 

   Δt = (2π/ω2)/2 = 1/(2*f2) = T2/2 seconds.  

One half of the period T2 of the coning motion is the time interval during 

which the coning motion adjusts to any step-change in the direction of the 

apparent wind approaching the flying bullet.  

In linear aeroballistics theory, FD is accurately modelled as  

   FD = q*S*(CD0 + δ2 *CDα + δ4 *CD4 + ...)  
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where   δ = Sin(α) ≈ α (in radians).  

As aerodynamic drag must remain an even function in δ, only even powers 

of δ can appear in this series expansion for FD. Here, we use only the first 

two terms of this series.  

CD0 is the coefficient of minimum drag for exactly nose-forward 

aerodynamic flight at a given airspeed (Mach Number), and CDα is the δ2 

yaw-drag coefficient at that same airspeed.  

Now the expression for kinetic energy loss in any particular half coning 

cycle becomes 

   ΔE(T2/2) = q*S*(CD0 + α2 *CDα)*V*T2/2 

The sensitivity of this expression to coning angle α is given by its partial 

derivative with respect to α : 

   ∂(ΔE)/∂α = 2*α*q*S*V*CDα*T2/2 

   ∂(ΔE)/∂α = α*q*S*V*CDα/f2.  

where  f2 = 1/T2 = ω2/2π = Coning rate in hertz.  
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Coning Kinetic Energy 
We can also formulate the much smaller kinetic energy EC of the orbital 

coning motion itself as  

   EC = (m/2)*(r*ω2)2 = (m/2)*(D*Sinα*ω2)2  

   EC = (m/2)*(D*ω2)2 *α2  

where D is the slowly varying coning distance of the CG of the bullet from 

its coning apex. Here we are again using the small angle approximation for 

small coning angles Sinα ≈ α (in radians).  

Forming the partial derivative again with respect to α, we find the sensitivity 

of EC to α to be 

   ∂(EC)/∂α = m*(D*ω2)2 *α.  

We now reason that the kinetic energy ΔEC of the coning motion lost to 

frictional damping of the coning angle by the difference Δα during each of 

these “steady-state” half coning cycles must be a small fraction e of the 

kinetic energy ΔE extracted from the forward motion of the bullet due to 

that same coning angle difference Δα during that same half coning cycle.  

For (Δα, α) ≠ 0, we can write 

    e*Δα*∂(ΔE)/∂α = Δα*∂(EC)/∂α 

and    e*(α*2π*q*S*V/ω2)*CDα = α*m*(D*ω2)2 

    e*(2π*q*S*V/ω2)*CDα = m*(D*ω2)2 

 
From Coning Theory, we know that the distance D (in feet) is given by 
 
    D = q*S*(CLα + CD0)/[m*(ω2)2] 
or    D*ω2 = q*S*(CLα + CD0)/[m*ω2].  
 
Substituting for D*ω2 and simplifying, we have  
 
   e*(2π*q*S*V/ω2)*CDα = m*(q*S)2*(CLα + CD0)2/[m*ω2]2 

 
or   e*(2π*m*V/ω2)*CDα = (q*S)*(CLα + CD0)2/[ω2]2  
 
and   e*(2π*m*V*ω2)*CDα = (q*S)*(CLα + CD0)2  
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Also, from Coning Theory, we know that the magnitude of the coning rate 
ω2 is given by 
 
    ω2 = q*S*d*CMα/(Ix*ω) 
 
where   Ix = m*d2*kx

2 

 
and    kx = Radius of Gyration of the bullet’s mass 
distribution about its x-axis given in units of calibers (d, in feet).  
 
Substituting for ω2 and simplifying, we have  
 
 (q*S*d*CMα)*(e*2π*m*V*CDα) = q*S*(CLα + CD0)2 *(ω*m*d2*kx

2) 
 
  e*2π*V*CMα*CDα = (ω*d*kx

2)*(CLα + CD0)2  
 
or   (ω*d*kx

2)/(e*2π*V) = CMα*CDα/(CLα + CD0)2. 
 
But, the auxiliary parameter P given in radians of bullet rotation per caliber 
of bullet travel in classic aeroballistics is given by Eq. 50 as 
 
    P = (Ix/Iy)*p*d/V = (kx/ky)2 *ω*d/V  
So, 
       
    (ω*d*kx

2)/(e*2π*V) = [ky
2/(e*2π]*P  

 
And, 
    [ky

2/(e*2π]*P = CMα*CDα/(CLα + CD0)2  
 
Or, 
    P = e*2π*ky

-2 *CMα*CDα/(CLα + CD0)2. 
 
And,  
    ω*d/V = e*2π*kx

-2 *[ky
2/(e*2π]*P = (Iy/Ix)*P 

 
    ω*d/V = e*2π*kx

-2 *CMα*CDα/(CLα + CD0)2  
 
    ω = e*2π*kx

-2 *(V/d)*CMα*CDα/(CLα + CD0)2 
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In particular, right out of the muzzle at t = 0,  
 
    ω0 = 2π*V0/Tw = 2π*V0/(n*d) 
 
So,  
    ω0*d/V0 = 2π/n = (Iy/Ix)*P0 

 
And, 
 n = 2π/[(Iy/Ix)*P0] = 2π*(ky/kx)-2 /[e*2π*ky

-2 *CMα*CDα/(CLα + CD0)2 
 
    n = (kx

2/e)*(CLα + CD0)2/(CMα*CDα)  
 
or    e = (kx

2/n)*(CLα + CD0)2/(CMα*CDα).  
 
 
For the well studied 30-caliber 168-grain Sierra International bullet, for 
example, at an initial airspeed of Mach 2.5: 
 
    L  = 3.98 calibers 
    kx

-2  = 9.218 calibers-2 

    CLα  = 2.850 
    CD0 = 0.320 
    CMα = 2.560 
    CDα = 4.400  
 CMα*CDα/(CLα + CD0)2 = CSα = 1.121 
 
For brevity we are coining the Coefficient of Stability CSα for this 
expression combining the four conventional aeroballistic coefficients.  
 
Greenhill’s formula suggests a barrel twist-rate n for this bullet of either 
     
  n = 150/3.98 = 37.7 calibers (up to Mach 2.5). 
 
 
Substituting these values into our expression for e above: 
 
    e = (kx

2/n)*/CSα = 0.002567 
and    1/e = 389.5.  
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for achieving initial coning motion having “minimum coning angle” with this 
bullet right out of the muzzle of the rifle barrel at Mach 2.5.  
 
Then, since kx

-2 = 9.0 calibers-2 for almost any modern monolithic rifle 
bullet, the maximum value of n for achieving initial hyper-stable flight is:  
 
   n = (389.54/kx

-2)/CSα  
   n = 43.28/CSα.  
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Coning Potential Energy 
The orbital potential energy PC of the coning rifle bullet with FC = -kC*r and r 

= D*Sin(α) can be formulated, with Sin(α) ≈ α, as 

   PC = -∫FC*dr = kC*r2/2 = q*S*Sin(α)*[CLα+CD]*r/2 

or    PC = q*S*D*[CLα+CD]*α2/2.  

Because the harmonic coning motion is isotropic and the orbital motion of 

the CG of the bullet is circular (at least non-elliptical), the orbital kinetic 

energy EC and orbital potential energy PC are always equal:  

    EC = (m/2)*(D*ω2)2 *α2 =  

    PC = q*S*D*[CLα+CD]*α2/2 

or    m*D*(ω2)2 = q*S*[CLα+CD].      

    D = q*S*(CLα + CD0)/[m*(ω2)2].  
 
Recall from Coning Theory that  
 
    D = q*S*(CLα + CD0)/[m*(ω2)2] QED. 
 
Since this coning distance parameter D is so basic to Coning Theory, 
perhaps we should simplify its aeroballistic definition here.  
 
From Coning Theory, we know that  
 
    ω2 = q*S*d*CMα/(Ix*ω) 
 
and from Tri-Cyclic Theory, we know that 
 
   (Ix/Iy)*ω = ω2 + ω1 = ω2*(R + 1)  
 
So,    L = Ix*ω = Iy*ω2*(R + 1). 
 
Then,   ω2 = q*S*d*CMα/[Iy*ω2*(R + 1)] 
    
And,   ω2

2 = q*S*d*CMα/[Iy*(R + 1)]. 
 
Substituting into our expression for D above, and simplifying, we have 
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  D = q*S*(CLα + CD0)/[m*(ω2)2].  
 
  D = [Iy*(R + 1)]*[q*S*(CLα + CD0)]/[m*q*S*d*CMα] 
 
  D = [(m*d2 *ky2)*(R + 1)/(m*d)]*[(CLα + CD0)/CMα] 
 
  D = [(d*ky2)*(R + 1)]*[(CLα + CD0)/CMα] 
 
  D = [d*kx2 *(ky2/kx2)*(R + 1)]*[(CLα + CD0)/CMα] 
 

D = [(d*kx2)*(Iy/Ix)*(R + 1)]*[(CLα + CD0)/CMα].  
 
Finally, the coning distance D expressed in calibers d can be written as  
 
  D/d = [(Iy/Ix)/kx-2]*[(R + 1)*(CLα + CD0)/CMα].  
 
The first bracketed expression is fixed for each type of rifle bullet. The ratio 
of its second moments of inertia (Iy/Ix) is about 7 to 15, with about 7 to 10.5 
being typical for jacketed lead-core match bullets. and 12 to 15 being 
typical for longer CNC-turned monolithic ULD bullets. The inverse of the 
square of the radius of gyration about the spin-axis in calibers (kx-2) is 
always about 9.2 calibers-2 for jacketed, tangent-ogive rifle bullets and 
about 9.0 calibers-2 for monolithic secant-ogive ULD bullets.  
 
The Stability Ratio R and the three aeroballistic coefficients in the second 
set of brackets are to be evaluated at any time during the flight as D/d 
gradually lengthens during the bullet’s flight downrange.  
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Evaluation of Slow-Mode Damping Factor 
As shown above, the kinetic energy loss due to yaw-drag ΔEα over a half 

coning cycle T2/2 can be written as 

   ΔEα(T2/2) = q*S*V*α2 *CDα*T2/2.  

We can also formulate the kinetic energy EC of the orbital coning motion 

itself as  

   EC = (m/2)*(r*ω2)2 = (m/2)*(D*Sinα*ω2)2  

    = (m/2)*(D*ω2)2 *α2 

where r is the coning radius of the CG of the bullet orbiting around a “mean 

CG” location moving smoothly along the “mean trajectory” of the bullet at its 

“mean velocity,” and  D is the slowly varying coning distance of the CG of 

the bullet from its coning apex, each given in feet, so that r = D*Sin(α).  

Now, as the coning angle α decreases (due to frictional damping) from its 

initial value α0 to its final value α1 at the completion of this half coning cycle, 

the change ΔEC in orbital coning energy can be written as 

   ΔEC = (m/2)*(D*ω2)2 *(α0
2 – α1

2)  

   ΔEC = m*(D*ω2)2 *[(α0 + α1)/2]*(α0 – α1)  

   ΔEC = m*(D*ω2)2 *α*Δα 

where (α0 + α1)/2 = α, the average coning angle over this half cycle, 

and α0 – α1 = Δα ˃ 0, the reduction in coning angle due to damping.  

We now hypothesize that, at least in hyper-stable flight in which no 

nutation needs damping, and for dynamically stable bullets, the average 

loss in “forward motion” kinetic energy ΔEα over any half coning cycle due 

to flying with an aerodynamic angle-of-attack α causes the average 

“frictional damping” decrease in coning energy ΔEC during that same half 

coning cycle. Therefore, these two energy losses must be proportional to 

each other. That is to say, we are tentatively assuming that a small fraction 

e of the yaw-drag of the bullet directly causes the damping of its coning 

angle α in steady-state, minimum coning angle, hyper-stable flight.  
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If this hypothesis is true, we can set ΔEC = e*ΔEα over any particular half 

coning cycle, where the constant fraction e is greater than zero but not 

greater than 1.0, and so that 

   m*(D*ω2)2 *α*Δα = q*S*V *α2 *e*CDα*T2/2 

or, dividing through by α2 and by [m*(D*ω2)2],  

   (Δα)/α = (T2/2)*[q*S*V*e*CDα]/[m*(D*ω2)2]. 

We recognize this expression as having the form of the classic exponential 

damping of the coning angle α which was discussed above:  

    α(t) = α(0)*exp[-λ2*t]  

with   λ2 = [q*S*V*e*CDα]/[m*(D*ω2)2].  

 

If we replace the half coning period T2/2 with a small increment in time dt, 

and replace Δα per half coning cycle with a small decrement -dα in α, then 

in the limit as dt approaches zero, this expression becomes 

    dα/α = -λ2*dt 

After integrating both sides from 0 to t, 

    ln[α(t)/α(0)] = - λ2*t 

Or, after exponentiating   

    α(t) = α(0)*exp[-λ2*t]  [QED]. 

 

Thus, we have derived the long-accepted damping relationship from the 

basic physics of our hypothesis that a portion e of the yaw-drag causes the 

damping of the coning angle for dynamically stable bullets in hyper-stable 

flight.  

If only a small fraction e (0 < e ≤ 1.0) of this extra yaw-drag induced kinetic 

energy loss is actually responsible for frictional damping of the coning 

angle α(t), we accommodate that simply by using e*CDα in the above 

expression for λ2: 

    λ2 = [q*S*V*e*CDα]/[m*(D*ω2)2].   
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Two basic magnitude relations from Coning Theory allow simplification of 
this expression above for the slow-mode damping factor λ2. We know that 
the coning distance D (in feet) is given by 
 
    D = q*S*(CLα + CD0)/[m*(ω2)2]  
 
and, we know that the magnitude of the coning rate ω2 is given by 
 
    ω2 = q*S*d*CMα/(Ix*ω) 
 
where, from Tri-Cyclic Theory, the expression for angular momentum of the 
spinning bullet can be written as    
 

Ix*ω = Iy*(ω2 + ω1) = Iy*ω2*(R + 1). 
 
Substituting in the denominator of the expression for ω2:  
 
    ω2 = q*S*d*CMα/[Iy*ω2*(R + 1)] 
 
or, multiplying by ω2     

(ω2)2 = q*S*d*CMα/[Iy*(R + 1)].  
 
 
Now, we can reformulate the coning distance D as  
 

D = Iy*(R + 1)*q*S*(CLα + CD0)/[m*q*S*d*CMα] 
 
D = Iy*(R + 1)*(CLα + CD0)/(m*d*CMα). 

 
And, (D*ω2)2 can be expressed as 
 
  (D*ω2)2 = {[Iy*(R + 1)*(CLα + CD0)]2 *q*S*d*CMα}/ 
    {(m*d*CMα)2 *Iy*(R + 1)} 
 
 (D*ω2)2 = {q*S*Iy*(R + 1)*(CLα + CD0)2}/{m2 *d*CMα} 
 
 
Substituting for (D*ω2)2 in our expression for λ2, we have 
  
       λ2 = [q*S*V*e*CDα]/[m*(D*ω2)2]  
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 λ2 = {(m2 *d*CMα)*[q*S*V*e*CDα]}/{m*q*S*Iy*(R + 1)*(CLα + CD0)2} 

Collecting terms 

  λ2 = {m*d*e*V/[Iy*(R + 1)]}*{CMα*CDα/(CLα + CD0)2} 
 
Let a Stability Coefficient CSα stand for the combined aeroballistic 

coefficients expression for any particular Mach speed:  

   CSα = CMα*CDα/(CLα + CD0)2  

Then 
   λ2 = {m*d*e*V/[Iy*(R + 1)]}*CSα 
 

From Tri-Cyclic Theory 

   (Ix/Iy)*ω = ω1 + ω2 = ω2*(R + 1)   

so,   R + 1 = (Ix/Iy)*ω/ω2 = (Ix/Iy)*f/f2  

and   Iy*(R + 1) = Ix*f/f2.  

So, the expression for λ2 can now be written as  

   λ2 = {m*d*e*V/[Ix*f]}*f2*CSα 

But,     Ix = m*d2 *kx
2 

so, the expression for λ2 can be rewritten as 

   λ2 = {V/[f*d]}*e*kx
-2 *f2*CSα.  

 

Right out of the muzzle 

    f = V0/(n*d)  revolutions/second  

or    n = V0/(f*d)  calibers/turn. 

 

So, using initial values for each flight variable,  

    λ2 = n*e*kx
-2 *f2*CSα .  
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For the well studied 30-caliber 168-grain Sierra International bullet, for 
example, at an initial airspeed of Mach 2.5: 
 
     kx

-2  = 9.218 calibers-2  
     Iy/Ix   = 7.441 
     CLα  = 2.850 
     CD0 = 0.320 
     CMα = 2.560 
     CDα = 4.400 
   n = 38.96 calibers/turn (or 12 inches/turn) 
         f1 + f2   = 2800/7.441 = 376.3 hz 
      Sg   = 1.75 
       R    = 4.79 
        f2   = (f1 + f2)/(R + 1) = 65.0 hz   
And, at Mach 2.5 
   CSα = CMα*CDα/(CLα + CD0)2 = 1.121 
 
   e = (kx

2/n)*CSα = 0.002567. 
 
From data published by Robert L. McCoy of the Ballistics Research Lab 

(BRL) at Aberdeen Proving Ground in Maryland, the pertinent aeroballistics 

coefficients for this old 168-grain bullet as a function of airspeed in Mach 

numbers were as shown in the table below.  
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30-caliber 168-grain Sierra International (per McCoy)
(spin damp)

Mach No. CMa CDa CLa CD0 Clp CSa

2.50 2.56 4.40 2.85 0.320 -0.0068 1.1209

2.20 2.69 5.40 2.68 0.339 -0.0073 1.5937

2.00 2.79 6.10 2.58 0.350 -0.0075 1.9824

1.80 2.88 6.80 2.45 0.365 -0.0080 2.4714

1.60 2.98 7.30 2.32 0.385 -0.0083 2.9731

1.40 3.06 7.60 2.15 0.410 -0.0088 3.5486

1.20 3.12 6.50 1.90 0.434 -0.0095 3.7228

1.10 3.15 3.60 1.70 0.447 -0.0098 2.4601

1.05 3.17 3.10 1.55 0.449 -0.0099 2.4592

1.00 3.24 3.00 1.35 0.430 -0.0100 3.0678

0.95 3.45 2.90 1.30 0.240 -0.0103 4.2187

0.90 3.43 2.90 1.35 0.160 -0.0105 4.3625

0.85 3.40 2.90 1.40 0.142 -0.0107 4.1468

0.80 3.38 2.90 1.45 0.140 -0.0108 3.8772

0.50 3.26 2.90 1.63 0.140 -0.0125 3.0177

0.00 3.05 2.90 1.75 0.140 -0.0150 2.4761

 

 

So, based on these aeroballistic parameters,  

   λ2 = n*e*kx
-2 *f2*CSα 

   λ2 = 59.9 seconds-1  

and   λS = -λ2*d/V0 = -0.000549 calibers-1.  

 

For critical damping during each full coning cycle we would need a 

damping factor of  

    [λ2]Crit = f2 = 65.0 sec-1  

So, this λ2 damping would be a bit less than critical damping of the coning 

angle α. This sub-critical damping of the coning angle requires only about 

0.2567-percent of the energy loss due to yaw-drag.  
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We can calculate a barrel twist rate n (calibers/turn) for just critical damping 

as: 

   [n]Crit = [λ2]Crit/[e*kx
-2 *f2*CSα] 

    [n]Crit = 1/[e*kx
-2 *CSα] 

 = 37.7 calibers/turn (per Greenhill) 

or   [n]Crit = 37.7*(0.308 in/cal) = 11.6 inches/turn.  

 

Unfortunately, the old 30-caliber, 168-grain Sierra International bullet was 

not actually dynamically stable at Mach 2.5 airspeed due to several bullet 

design errors. These calculations are shown as if it were stable simply 

because it is one of the few bullets for which we have the complete set 

aeroballistic coefficient data. The above formulation for λ2 does not apply 

for dynamically unstable bullets. The slow-mode damping factor for that 

particular bullet at Mach 2.5 was actually negative (in the formulation used 

herein).  

For initial critical damping of the coning motion of any rifle bullets which are 

dynamically stable, we can formulate the barrel twist-rate required [n]Crit in 

calibers/turn. Since [λ2]Crit = f2, the expression for [n]Crit reduces to: 

    [n]Crit = 1/(e*kx
-2 *CSα) 

with    CSα = CMα*CDα/(CLα + CD0)2 

and all coefficients evaluated at muzzle speed.  

With the constant fraction e = 0.0023345 and kx
-2 ≈ 9.0 calibers-2 for 

monolithic VLD and ULD rifle bullets, the expression for [n]Crit becomes 

    [n]Crit = 47.6 calibers/CSα.  

As shown in the table above for the old Sierra International bullet, the 

Damping Coefficient CSα varied for different muzzle speeds from 1.121 at 

Mach 2.5 up to 3.723 at Mach 1.20.  

For long-nosed monolithic copper-alloy ULD bullets, we can expect CDα to 

be larger and (CLα + CD0) to be smaller at high Mach-speeds out of the 
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muzzle, so expecting an initial value of about 2.0 to 2.5 for CSα is not 

unreasonable for these modern bullets.  

As the Damping Coefficient CSα increases, the barrel twist-rate required for 

critical damping of the coning angle α, and thus for achieving early hyper-

stable bullet flight, must get “faster.” That is, [n]Crit in calibers/turn must 

get smaller.  

For those firing monolithic copper-alloy bullets at Mach 3.0 to Mach 3.5, the 

single best recommended barrel twist-rate should be:  

[n]Crit ≈ 20 calibers/turn.  

By ensuring critical damping of the coning angle initially, a bullet fired from 

a barrel having 19 to 21 calibers per turn twist-rate and entering the 

undisturbed ambient atmosphere a few yards ahead of the rifle with zero 

yaw attitude and zero yaw-rate should achieve hyper-stability initially and 

maintain it throughout its flight to an extremely long-range (ELR) target. 

This copper-alloy ULD bullet would be flying with minimum aerodynamic 

drag due only to its designer-minimized zero-yaw coefficient of drag CD0 all 

the way to its maximum-range target.  

The initial gyroscopic stability Sg of such a monolithic ULD bullet fired from 

a barrel having this critical twist-rate should be approximately 3.0 (R = 10). 

The initial dynamic stability for these bullets should then be 0.33 (R = 10). 

These bullets should then be exceedingly stable in transiting the turbulent 

transonic speed region far downrange and should then continue flying with 

minimum yaw (coning angle) as reasonably good subsonic bullets.  

 

 

 

 


