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We have been exploiting Coning Theory in the development of our new 
turned copper Ultra-Low-Drag rifle bullet designs. We ran into an accuracy 
problem in our test-firing which we did not properly anticipate. This 
probably happened largely because the aeroballistic yaw attitude α of the 
coning bullet is, itself, a free variable in Coning Theory, and it cannot 
readily be formulated. For example, the slow-mode coning rate ω2 is 
completely independent of the coning angle α.  
 
Having addressed and ameliorated in designing our copper ULD bullets 
many of the persistent accuracy issues experienced with conventional and 
monolithic rifle bullets; in-bore yawing of the engraved bullet, lateral throw-
off caused by static or dynamic imbalance of jacketed bullets, gas leakage 
past monolithic bullets causing varying muzzle velocity losses, and a few 
others, we expected to see improved target accuracy in our latest test 
results. However, that has not yet occurred.  
 
We also noted distressingly large variations in the times-of-flight to 1,000 
yards for carefully prepared and fired shots. These times-of-flight were 
instrumentally measured for a 5-shot string varying only ±2 feet per 
second in muzzle speed V0. The average air-speed over this distance was 
Mach 2.5. Something is causing some of these bullets to exhibit 
significantly more air-drag than other identical bullets fired identically in the 
same string.  
 

The Yaw-Drag Problem    
  
In test-firing our prototype copper Ultra-Low-Drag rifle bullets, David Tubb 
measured almost 30-percent reduced mean aerodynamic drag over 
1,000 yards compared to the G7 reference projectile shape, well below the 
drag predictions of Bob McCoy’s McDRAG estimations (and well outside 
his 5-percent estimation limits). We correctly attributed much of this air-
drag reduction to reduced yaw-drag in those tests. David used a Schneider 
338-caliber barrel with a 7.5-inch twist (n = 22.7 calibers per turn) which 
produced an initial gyroscopic stability (Sg) of 2.75 with our earlier copper 
ULD bullets. We correctly intuited that by using a rifling twist-rate of n ≈ 20 
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calibers per turn, any monolithic bullet of up to about 6 calibers in length 
could fly with its lowest possible total air-drag, FD = q*S*CD0.  
 
The empirical data clearly shows that for dynamically stable rifle bullets we 
can significantly reduce their total air-drag by selecting faster twist-rate 
rifled barrels (smaller values of n). For dynamically stable rifle bullets, the 
slow-mode damping factor λS in inverse calibers (or λ2 as used here in 
inverse seconds) controls the arbitrary time T (in seconds) required for 
any initial coning angle-of-attack α0 to damp down to practical 
insignificance, say when Sin2α*CDα becomes less than a thousandth (10-3) 
of the zero-yaw drag coefficient CD0.  
 
    α(t) = α0*exp[-λ2*t].  
 
In classic linear aeroballistics, the fast-mode and slow-mode damping 

factors are given in inverse calibers of flight travel distance (but 

classically considered as being dimensionless) as  

   λF = -0.5*[H + P*(2*T – H)/SQRT(P2 – 4*M)] 

   λS = -0.5*[H – P*(2*T – H)/SQRT(P2 – 4*M)].  

Where H, P, T, and M are standard canonical aeroballistic parameters:  

H = [ρ*S*d/(2*m)]*{CLα – CD – kY
-2 *(CMq + CMαdot)}  

P = (IX/IY)*ω*d/V       (in radians per caliber of travel, also 

considered dimensionless here) 

   T = [ρ*S*d/(2*m)]*{CLα + kX
-2 *CMpα}  

   M = [ρ*S*d/(2*m)]*{kY
-2 *CMα} 

with  ρ*S*d/(2*m) ≈ 0.0000187 for a 250-grain 338-caliber bullet.  

Here, we are using ω to represent the instantaneous spin-rate of the bullet 

in radians per second to eliminate any possible confusion arising from the 

several different meanings of spin-rate p which have been used historically. 

Also, the aeroballistic parameter T should not be confused with the 

arbitrary time T used elsewhere in this paper.  

For our monolithic copper ULD bullet designs, the inverse square radii of 

gyrations, kX
-2 ≈ 9.0 calibers-2 and kY

-2 ≈ 0.55 calibers-2, with IY/IX ≈ 16.5.  
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The aeroballistic coefficients, CD, CLα, and CMα are well known to us from 

their use in Coning Theory. The other aeroballistic coefficients, (CMq + 

CMαdot) and CMpα, are minor moments causing “pitch damping” and due to 

Magnus forces, respectively, and have not been used in Coning Theory.  

The damping of the coning angle α is accomplished by the moment Mαdot 

acting about the apex of the coning motion. The damping of the projectile’s 

angle-of-attack α is done by a moment Mq acting about its CG, but always 

in the same directional sense and parallel to Mαdot. Coning theory shows 

that the coning angle α is identical to the spinning projectile’s aerodynamic 

angle-of-attack α. Thus, both moments are dynamically damping the same 

angle, but about parallel axes separated by the coning distance D (in feet) 

from the CG of the bullet to the apex of its coning motion given by:   

    D = q*S*(CLα + CD)/[m*(ω2)2]. 

We can also formulate D in calibers as:  

  D/d = DAPEX = ky2 *(R + 1)*(CLα + CD)/CMα. 

Interestingly, the distance DCP (in calibers) from the CG to the aerodynamic 

center of pressure CP is given by:  

    DCP = CMα/(CLα + CD) 

So that,   DApex*DCP =  (R + 1)*ky2  (in calibers2) 

with ky2 ≈ 1.8 calibers2 for our copper ULD bullets.  

These two damping moments, Mαdot and Mq, are difficult to measure 

separately, so only their sum is usually determined. All of the force and 

moment coefficients are empirically determined in linear aeroballistics.  

Examining these classic expressions for the two damping factors, λF and 

λS, and having reversed the signs of the second terms from those found in 

some references, we note that the factors P/SQRT[P2 – 4M] can be 

simplified by expressing that factor first in terms of the gyroscopic stability 

Sg = P2/4M and then in terms of the stability ratio R = ωF/ωS = ω1/ω2, 

making use of the interrelationships:  

    Sg = (R + 1)2/(4*R) > 1 

and   R = 2*{Sg + SQRT[Sg*(Sg – 1)]} – 1 > 1. 
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We often find the variable R to be more tractable analytically than Sg itself.  

Dividing through by P = +SQRT[P2] and substituting:  

   P/SQRT[P2 – 4M] = (R + 1)/(R – 1), 

which is simpler and perhaps conveys more readily appreciable meaning. 

Then the expressions for λF and λS (in inverse calibers) can be written as: 

   λF = -0.5*[H + (2*T – H)*(R + 1)/(R – 1)] 

   λS = -0.5*[H – (2*T – H)*(R + 1)/(R – 1].  

After some algebraic manipulation, the expressions for the classic damping 

factors simplify to:  

   λF =  [H – T*(R + 1)]/(R – 1) 

   λS = [-H*R + T*(R + 1)]/(R – 1).  

Note that the algebraic signs of the terms are properly crossed and that  

   λF + λS = -H*(R – 1)/(R – 1) = -H  

as has long been known in linear aeroballistics theory.  

The stability ratio R must be greater than 1.00 as the lower limit for 

gyroscopic stability, and R is typically much greater than 1.00. For 

example, if R = 11.0 (Sg = 3.273) for a gyroscopically very stable projectile, 

the two classic damping factors would become 

    λF =  0.1*H – 1.2*T 

    λS = -1.1*H + 1.2*T  

And, again   H = -(λF + λS).  

The conditions for dynamic stability are that  

    0 < Sd = 2*T/H < 2 

and    1/Sg < Sd*(2 – Sd).  

To continue our illustrative example, if we also set H = (4/3)*T (i.e., Sd = 

1.5), these damping factors would become 

    λF =  0.133*T – 1.2*T = -1.067*T 
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    λS = -1.466*T + 1.2*T = -0.266*T  

which are dynamically stable fast-mode and slow-mode damping factors, 

since T is positive by construction for spin-stabilized rifle bullets.  

We are instead using these two damping factors herein as 

    λ1 = - λF*V/d 

and    λ2 = - λS*V/d, 

reversing their signs in accordance with modern engineering practice and 

converting them from units of inverse calibers of projectile travel 

distance into inverse seconds of flight time t, each starting with the 

commencement of ballistic flight.  

As we shall show, the conditions for the dynamic stability of rifle bullets 

really only concern the slow-mode damping factor λS, or λ2 as used here.  

The damped coning angle α(t), which is also the aerodynamic angle-of-

attack α(t) for spin-stabilized, rotationally symmetric projectiles, can now be 

expressed as  

    α(t) = α0*exp[-λ2*t] 

using time-of-ballistic-flight t as the independent variable.  

A benefit of this change of variables for the slow-mode damping factor is 

the convenient metric that whenever λ2 equals f2, the slow-mode coning 

rate in hertz, the coning angle α(t) will be critically damped during each 

coning cycle.  

The raison d'être for this exercise is to examine how the slow-mode 

damping factor λS and, thence, our λ2 depend upon our selection of the 

twist-rate n in calibers per turn for the rifled barrel firing the projectile.  

We know from prior work that both the gyroscopic stability Sg and its 

equivalent gyroscopic stability ratio R (or more precisely R + 1) vary 

inversely with the square of the twist-rate n, or with n-2: 

  R + 1 = (Ix/Iy)*{[32π*m*kx2]/[n2 *ρ*d3 *CMα]}.  
  
This handy relationship allows evaluating R and Sg whenever CMα is 

known.  
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Examining first the expression for the more critically important slow-mode 

damping factor λ2,  

  λ2 = - λS*V/d = (V/d)*[H*R/(R – 1) – T*(R + 1)/(R – 1)],  

Substituting and again simplifying, the slow-mode damping factor becomes 

   λ2 = (V/d)*[(H – T) – (2*T – H)/(R – 1)]  

which essentially recovers the classic forms for the two aeroballistic terms.  

Clearly, only the (2*T – H) term of this expression is principally dependent 

upon 1/R, since 1/(R – 1) = 1/R + 1/R2 + 1/R3 +.... Thus, the absolute value 

of this portion of the slow-mode damping factor λ2 is almost directly 

proportional to n2, the square of the selected rifling twist-rate n in calibers 

per turn. The aeroballistic parameter T is almost always positive, and the 

(2*T – H) term is normally positive for spin-stabilized rifle bullets.  

Since this (2*T – H) term usually combines negatively with the first term, 

decreasing its size by selecting a faster twist-rate (smaller value of n2) 

normally results in a larger net positive value for λ2 and, thus, results in 

more rapid damping of the slow-mode coning motion and a more 

dynamically stable rifle bullet.  

A similar examination of  the formulation for the fast-mode damping factor 

yields:  

   λ1 = (V/d)*[(       T) + (2*T – H)/(R – 1)]  

and    λ2 = (V/d)*[(H – T) – (2*T – H)/(R – 1)].  

Or, for the classic damping factors, λF and λS:  

   λF = -[(      T) + (2*T – H)/(R – 1)]  

   λS = -[(H – T) – (2*T – H)/(R – 1)].  

These expressions for the damping factors are easier to evaluate and 

simpler to analyze.  

Note the differences between these two damping rate expressions:  

• In the first terms, H has disappeared for the fast mode, and the signs 

of T are reversed [T is almost always positive.], and  
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• While the second terms are identical but for their reversed signs, they 

are simplified, and we have nicely recovered the classic (2*T – H) 

form.  

The divisor of the (2*T – H) term, (R – 1) = (ω1 – ω2)/ω2, is physically the 

ratio of the relative nutation rate to the coning rate, since both rotations 

are always in the same sense. For example, if R = 2 (or Sg = 1.125), the 

fast-mode arm makes just R – 1 = 1 (single) rotation per coning cycle 

relative to the slow-mode arm, and (without considering damping) the 

epicyclic wind-axes plot becomes a cardioid with only one inward-pointing 

cusp at t = 0, 2π/ω2, etc. As an initial condition for this case, these two 

arms must be equal in length and colinear. but oppositely directed, in 

accordance with the Law of Conservation of Angular Momentum.  

As for the fast-mode damping factor, even though the (2*T – H) term again 

varies almost directly with n2, the matching signs of the two terms 

assures that the fast mode damping factor λ1 will not present a dynamic 

stability problem for gyroscopically well stabilized rifle bullets.  

Selecting a faster twist-rate barrel (smaller value of n), normally produces a 
larger slow-mode damping factor λ2 and thus a smaller total yaw-drag 
velocity retardation ΔV. This extra yaw-drag retardation ΔV starts at t = 0 
and ceases accumulating very early in ballistic flight, at some time T when 
the yaw-drag becomes arbitrarily insignificant. Obviously, this lost bullet 
velocity can never be recovered over the remainder of ballistic flight.  
 
The total extra retardation ΔV caused by yaw-drag while any random initial 
yaw angle α0 is damping out to practical insignificance is inversely 
proportional to the square root of the size of λ2 in inverse seconds. We 
can see this by examining the extra loss in kinetic energy of the bullet ΔKE 
attributable to a small (non-zero) initial yaw attitude α0:  
 
    ΔKE ≡ (m/2)*(ΔV)2 

and    ΔKE = -q*S*CDα*V0*α0
2 ʃexp[-2*λ2*t]dt 

or    ΔKE = q*S*CDα*V0*α0
2/(2*λ2).  

So,   ΔV = α0*SQRT[q*S*CDα*V0/(m*λ2)].  

Here, we are integrating just the δ2 yaw-drag force component of the Drag 

Equation of linear aeroballistics from t = 0 at the beginning of ballistic flight 
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to some arbitrary later time T when minimum coning angle “hyper-stable” 

flight has been achieved. For a dynamically stable rifle bullet fired from a 

very quick-twist (n ≈ 20) barrel, the time T occurs after just a very few early 

coning periods T2, and the use of initial values is justified in this 

formulation.  

Multiplying this yaw-drag force component by the initial velocity V0 yields 

the power initially being dissipated by this extra frictional force. Integrating 

this power over time (as in calculating kilowatt-hours, for example), from 0 

to T, totals the extra work done in slowing the bullet until it achieves 

minimum-drag hyper-stable flight at that arbitrary later time T.  

Hyper-stable, minimum coning angle flight is the nearest to exactly nose-

forward minimum-drag flight which can be achieved by any spin-stabilized 

projectile fired through the air. Barring any catastrophic step-change in 

flight conditions, once hyper-stable flight has been achieved in early flight, 

the projectile continues flying with minimum air-drag throughout at least its 

remaining supersonic flight. The minimum coning angle in flat-firing is the 

change in flight path angle solely due to gravity during each subsequent 

coning cycle, or 2π*g/(ω2*V).  

From this expression for ΔV and our understanding of the approximately 

inverse square dependence of the slow-mode damping factor λ2 upon the 

rifling twist-rate n, the total retardation of the bullet over a long-distance 

flight ΔV due to (early) yaw-drag would be at least partially proportional to 

n, the rifling twist-rate in calibers per turn, and the extra retardation ΔV 

would be crudely proportional to α0*n for any random initial yaw angle α0.  

We hypothesize that a randomly varying initial aeroballistic yaw, or initial 
yaw-rate (which has the same effect), is causing the large variation in air-
drag measured in David’s tests. We attribute this unexpectedly large drag 
variation to random yaw, or yaw-rate, destabilization occurring while the 
rifle bullets are transiting the muzzle-blast region before the beginning of 
ballistic flight. We have added a convex radiused base onto the previously 
flat, square boat-tails of our copper bullets which has somewhat mitigated 
these initial ballistic yaw disturbances.  
 
The spin-stabilized projectile must be considered mechanically to be a “free 
body” as it is about to commence ballistic flight. Thus, it can carry only its 
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spin-rate, aeroballistic yaw, and yaw-rate attitude effects into aeroballistic 
flight.  
  
As we understand the mechanics of possible random size and random 
orientation initial aerodynamic yaw disturbances occurring in the muzzle-
blast zone, any yaw-rate picked up by the spinning projectile would be 
always in the same direction as (and could only increase the magnitude of) 
an initial yaw angle. The result would be indistinguishable from having 
started ballistic flight with a larger initial yaw angle, but with zero initial 
yaw-rate. This is analogous to the ballistician’s difficulty in separating the 
two “pitch damping” moments mentioned earlier. The initial yaw-rate is 
separately damped only by Mq, one of the two combined  “pitch damping” 
moments. Hence, we will only consider initial yaw angles α0 herein, even 
though a non-zero initial yaw-rate might be the primary result of muzzle-
blast disturbance.  
 
All of this being said, we should point out that the shortest measured time-
of-flight over David Tubb’s 1,000 yard instrumented test range indicates the 
individual shot which suffered the least yaw disturbance while transiting the 
muzzle-blast zone before commencing ballistic flight. So, its highest 
calculated BC value is the one value most representative of that bullet 
design’s true nose-forward air-drag coefficient CD0. The hypothesized, 
random, non-zero initial yaw-drag can only slow the bullets and increase 
their times-of-flight. Be aware of what they actually represent before just 
routinely using statistical mean values as being most representative 
whenever a random variable has a single-sided distribution function as 
does α0 in this case.  
 
Aerodynamic yaw-drag is a frictional force and must be an even function 
in angle-of-attack α. In linear aeroballistics theory, the yaw-drag coefficient 
is pre-multiplied by  

δ2 ≡ Sin2(α) ≈ α2.  
 
with the aeroballistic yaw angle α approximated for small angles as 
 
    α ≈ SQRT[pitch2 + yaw2]  
 
for the small aeronautical-type pitch and yaw attitudes considered here. For 
spin-stabilized, rotationally symmetric projectiles, there is really so such 
thing as a negative aerodynamic angle-of-attack α0.  
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Larger attitude angles would require the use of sequentially ordered 
Eulerian attitude (gimbal) angles together with 4x4 quaternion matrix 
attitude transforms for any changes of coordinate systems in order to avoid 
mathematical ambiguity (quadrant ambiguities or singularities analogous to 
gimbal lock) in every case.  
  
     The Accuracy Problem 
  
This initial random yaw-disturbance hypothesis is strongly reinforced by the 
disappointing accuracy results with these copper ULD bullets test-fired both 
by David Tubb at his 1,000-yard outdoor test range and in our wind-free 
100-yard indoor test range. We each are seeing about 0.8 MOA 5-shot 
groups with these fast-twist rifle barrels, even when everything else is done 
correctly for best accuracy. David’s 338-caliber Schneider P5 test barrel is 
rifled at 7.5 inches (22.7 calibers) per turn, while our Schneider test barrel 
is similarly button-rifled at 7.0 inches (21.2 calibers) per turn.  
  
The same analysis based on Coning Theory which allowed our earlier 
formulation of the angular trajectory deflection termed “aerodynamic jump” 
caused by a horizontal crosswind at the firing point holds for a rifle bullet 
entering a wind-free atmosphere with a non-zero initial aeroballistic yaw 
attitude. [In fact, this is exactly how Bob McCoy handled the simulation of 
firing-point crosswinds in his own 6-degree-of-freedom flight simulator.] The 
resulting angular deflection drives the bullet away from its intended 
trajectory in a radial direction 90-degrees advanced in the sense of the 
rifling twist from the roll orientation of the initial yaw angle itself.  
As this angular deflection is given in milliradians or minutes of angle 
(MOA), the miss distance produced on the target is strictly proportional to 
firing distance (minus about 10 yards in front of the muzzle where the jump 
defection effectively occurs). A random magnitude initial yaw disturbance 
which is also randomly oriented in roll angle will simply increase “extreme 
spread” shot-group sizes as measured on the target.  
  
This aerodynamic jump is caused by an impulsive aerodynamic lift-force 
moving the CG of the rifle bullet away from its intended trajectory during the 
first half of its first coning cycle during early ballistic flight. This transient 
lift-force is integrated over the time duration of that first half-period of the 
bullet’s coning motion to produce a cross-track impulse (force summed 
over a short time interval) which shifts the direction of that bullet’s linear 
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momentum vector (without changing its magnitude) by a rectangular vector 
summing process. This rotating cross-track lift-force reverses its sign after 
180 degrees of coning motion (spanning the transient start-up event) and 
directionally cancels during all subsequent coning motions.  
  
The size of this aerodynamic lift-force is directly proportional to the size 
of the initial random yaw angle a0 causing it. The amount of time over 
which this cross-track impulse accumulates is inversely proportional to 
the initial coning rate f2. The initial coning rate f2 is itself directly 
proportional to the firing barrel’s twist-rate n as determined from the Tri-
Cyclic Theory:  
  
                                    f2 = (Ix/Iy)*[V0/(n*d)]/(R + 1)    
  
where                          Ix, Iy = Second moments of inertia of the bullet’s                   
mass distribution about crossed principal axes  
                                    d = Caliber of the bullet in feet 
                                    R = f1/f2 = Gyroscopic stability ratio.  
  
Both Sg and R + 1 vary inversely with the square of the rifle barrel’s 
twist-rate n in calibers per turn.  
  
Examining the above expression for f2, the initial coning rate f2 in hertz 
varies directly with the rifling twist-rate n; i.e., with n-1/n-2 = n, which in 
turn causes both the cross-track impulse integration time and indeed the 
resulting size of that cross-track impulse to vary inversely with the value of 
n. So, the accuracy-destroying aerodynamic jump varies in size quite 
directly with α0/n.  
 

“Quicker twist-rates cause inversely proportional larger 
aerodynamic jumps.”  

 
In examining Bob McCoy’s own formulation for aerodynamic jump which is 
derived by calculus from the Equations of Motion, we find a factor of 2π/n, 
as its only dependence upon barrel twist-rate n. Both independent 
derivations, from the Coning Theory and from the Equations of Motion, 
show this same inverse dependence of the size of the aerodynamic jump 
upon barrel twist-rate n. Thus, in both independent formulations of 
aerodynamic jump, selecting a smaller n (for a faster twist-rate) increases 
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the sizes of any aerodynamic jump trajectory deflection angles in inverse 
proportionality.  
  
So, in a practical sense, we could simply say that, in the presence of 
random initial yaw disturbances,  
 

“Accuracy is directly proportional to the twist-rate n of the rifle 
barrel.”  

 
Competitors in rifle accuracy sports have long sought to use the slowest 
feasible twist-rates (largest number n, of perhaps 40 to 60 or more 
calibers per turn) in their match rifle barrels. Now we see yet another 
rationale supporting that acquired wisdom.  
 
For best accuracy in the presence of some spectrum of random initial yaw 
disturbances, we want the slowest possible rifling twist-rate, but for lowest 
air-drag with the same array of initial yaw disturbances we want the much 
faster 20 calibers per turn twist-rate, especially in shooting long monolithic 
ultra-low-drag (ULD) rifle bullets to great distances. We simply cannot 
have it both ways at once.  
  
In extreme long-range (ELR) riflery, we need the lowest possible air-drag to 
maximize supersonic range and to minimize crosswind sensitivity even at 
some expense in gilt-edge target accuracy. So those ELR riflemen might 
stick with my recommended 20 calibers per turn twist-rates when firing 
monolithic ULD bullets. On the other hand, 100-yard benchrest competitors 
will likely stick with their 60, or more, calibers per turn 6 mm PPC barrels. 
I now recommend rifling twist-rates of 24 calibers per turn for general use 
with any monolithic rifle bullets. However, we have had many conventional 
jacketed match rifle bullets disintegrate just out of the muzzles of these 
fast-twist barrels.  
  
     Takeaways 
  
The problems caused by yaw destabilization of fired rifle bullets occurring 
while they are transiting the muzzle-blast zone are much more serious than 
had been anticipated. By reducing the initial coning rate from a typical 60 to 
75 hertz for jacketed, lead-cored match bullets to the range of 25 to 45 
hertz for our copper ULD bullets fired from much faster twist-rate barrels, 
we have inadvertently amplified the accuracy problem by up to a factor of 
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3, both in its highly variable extra air-drag aspect and in its angular-jump 
accuracy destroying effects. We are currently convex-radiusing the boat-tail 
bases of our copper ULD bullets at 0.74-calibers, which does help in 
controlling their yaw destabilization within the muzzle-blast region, and we 
plan to try also slightly beveling the rear corners of those boat-tails.  
  
More research is needed into rifle building techniques which facilitate 
launching monolithic bullets at high speeds from very fast-twist barrels with 
little or no initial aeroballistic yaw or yaw-rate. Barrel porting and the use of 
integral suppressors come to mind, as does trying other non-tubular styles 
of muzzle brakes. We suspect that very high-rate gas flow through any 
annular ring-shaped aperture surrounding the base of the bullet within a 
tubular muzzle brake device might be the culprit destabilizing our bullets.  
 
We have acquired a well proven Barrett 98B/MRAD 338-caliber muzzle 
brake to compare with our very effective tubular MB design. This Barrett 
design features two very large horizontal exit ports per side which should 
guarantee an extremely high gas-evacuation-rate. Perhaps artillery 
designers have long since gotten a handle on this yaw-destabilization 
problem with the high evacuation-rate brakes which they formerly attached 
to gun muzzles before the development of discarding sabot rounds and fin-
stabilized projectiles made their continued use impractical.  
 
With our fast-twist test barrels, we are also in a unique position to evaluate 
exactly how yaw-destabilizing is the use of the muzzle-attached 
MagnetoSpeed© type of chronograph. This type of device places a 6.5-
inch long pressure-wave reflecting planar surface along side of, and 
parallel to, the projected bore axis just 0.25-inch from the near edge of the 
fired projectile. This is reminiscent of Dr. Franklin Mann’s “plank shooting” 
experiments of the late 1800’s.  
 
Fitting high quality, very fast-twist barrels to match accurate rifles and firing 

very well designed and well crafted monolithic alloy rifle bullets allows us to 

investigate this “random initial yaw” problem more readily. Setting n = 20 

calibers per turn for our test barrels amplifies this accuracy issue for 

better study.  
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 Summary of Rifling Twist-Rate Dependence 

The aeroballistic parameters which vary in magnitude directly with the 

first power of n, the rifling twist-rate given in calibers per turn, are: 

• Coning rate (or slow-mode precession rate) ω2(t) in radians per 

second or f2(t) in hertz  

• Yaw-drag retardation ΔV (approximately) due to initial yaw 

attitude α0 with dynamically stable bullets.  

Those parameters which vary inversely with the first power of n are:  

• Projectile spin-rate ω(t) of the bullet in radians per second 

• Auxiliary aeroballistic parameter P  

• Crosswind aerodynamic jump deflection angle AJ in MOA  

• Initial-yaw-caused aerodynamic jump deflection angle AJ  

• Shot-group size increases caused by aerodynamic jump in the 

presence of random initial yaw attitudes 

• Yaw-of-repose horizontal angle βR(t) in radians 

• Long-range spin-drift SD(t) horizontal distance in feet 

• Period T2 of a coning cycle 2π/ω2(t) or 1/f2(t) in seconds 

Those parameters which vary inversely with the square of n are:  

• Gyroscopic stability factor Sg  

• Gyroscopic stability ratio R, as (R + 1) exactly  

• Coning CG-to-cone-apex distance D in feet  

• Coning radius r = D*Sin(α) of CG motion in feet.  

Each aeroballistic coefficient is assumed to vary only with the Mach-speed 

of the bullet in linear aeroballistics. The mass m of the bullet and its spatial 

distribution parameters (CG, IX, IY, etc.) are generally assumed to be 

constants. The muzzle velocity V0 of the fired bullet is assumed to be 

independent of the rifling twist-rate n selected for the firing barrel.  


