Ok, so I have been trying to learn alot of different things in long range shooting. I was looking at a web site and I am now a little confused as how they keep comming up with <span style="color: #CC0000">27.8</span> for different size targets. Can someone who has ranged with a mil dot before explain this to me.
Thankyou, Wes
Here is the part I'm speaking about.
<div class="ubbcode-block"><div class="ubbcode-header">Quote:</div><div class="ubbcode-body">
The Mil relation formula. There are a couple of permutations of the mil relation formula floating around. At first look most of them strike fear in the hearts of most of us Neanderthal, knuckle dragger types, but they are really quite user friendly. Granted the formulas require you to use more than your fingers and toes, but we Marines can handle it! Well, here we go. The basic one is:
Height of item in yards (meters) x 1000/Mils read = Distance to item in yards (meters)
This formula is good when the sniper knows an item’s size in yards. My only problem with this version is that cops often have to deal with small items such as vehicle wheels, small stickers on windows, headlights etc. This requires the officer to convert a 7" headlight into a decimal equivalent in yards before they can work the formula. And since most cops are fellow Neanderthals and are usually under a fair amount of stress to begin with, I prefer to teach the formula:
Height of item in inches x 27.8 (25.4)/Mils read = Distance to target in yards (meters).
The formula can be worked backwards in training so that if the distance to the target is known we will know what the mil reading should be. This is handy for beginners learning to read mil dots. The formula for this is:
Size of item in inches x 27.8 (25.4)/Distance in yards (meters) = Mils
Knowing the sizes of items being measured is a matter of knowing your prospective area of operation and making a list of the sizes of standard items. Make sure you get both height and width of objects as you can mil both dimensions but the largest dimension mathematically will usually give the most accurate answer. Military snipers should have sizes of enemy vehicles, enemy weapons, average heights of soldiers, etc. An LE sniper should have sizes of traffic signs, bricks, license plates, etc. So carry a tape measure and a notebook with you and prepare to have people look at you funny as you measure curbs, traffic lights, mailboxes and other commonly found objects in your area of operation.
So as you can see the mil relation formula shouldn’t scare anyone off. As a matter of fact there are ways to make the use of the formula even easier. Many databooks such as the TRGT data book and others have charts developed using computer spreadsheets that allow the shooter to find the target size and the mil reading on the chart and it gives the shooter the distance without any hate or discontent. You can even make your own using the above formulas if you know how to use a spreadsheet such as MS Excel.
The EASIEST way to deal with this formula is to get yourself a MILDOT MASTER™. This handy slide-rule type device does the calculations for the mil relation formula, corrects for target size when viewed at angles, corrects for slope, gives MOA/mil/in equivalence and even predicts the future. (You have to bury some chicken bones and some other stuff to get the last feature).
</div></div>
Thankyou, Wes
Here is the part I'm speaking about.
<div class="ubbcode-block"><div class="ubbcode-header">Quote:</div><div class="ubbcode-body">
The Mil relation formula. There are a couple of permutations of the mil relation formula floating around. At first look most of them strike fear in the hearts of most of us Neanderthal, knuckle dragger types, but they are really quite user friendly. Granted the formulas require you to use more than your fingers and toes, but we Marines can handle it! Well, here we go. The basic one is:
Height of item in yards (meters) x 1000/Mils read = Distance to item in yards (meters)
This formula is good when the sniper knows an item’s size in yards. My only problem with this version is that cops often have to deal with small items such as vehicle wheels, small stickers on windows, headlights etc. This requires the officer to convert a 7" headlight into a decimal equivalent in yards before they can work the formula. And since most cops are fellow Neanderthals and are usually under a fair amount of stress to begin with, I prefer to teach the formula:
Height of item in inches x 27.8 (25.4)/Mils read = Distance to target in yards (meters).
The formula can be worked backwards in training so that if the distance to the target is known we will know what the mil reading should be. This is handy for beginners learning to read mil dots. The formula for this is:
Size of item in inches x 27.8 (25.4)/Distance in yards (meters) = Mils
Knowing the sizes of items being measured is a matter of knowing your prospective area of operation and making a list of the sizes of standard items. Make sure you get both height and width of objects as you can mil both dimensions but the largest dimension mathematically will usually give the most accurate answer. Military snipers should have sizes of enemy vehicles, enemy weapons, average heights of soldiers, etc. An LE sniper should have sizes of traffic signs, bricks, license plates, etc. So carry a tape measure and a notebook with you and prepare to have people look at you funny as you measure curbs, traffic lights, mailboxes and other commonly found objects in your area of operation.
So as you can see the mil relation formula shouldn’t scare anyone off. As a matter of fact there are ways to make the use of the formula even easier. Many databooks such as the TRGT data book and others have charts developed using computer spreadsheets that allow the shooter to find the target size and the mil reading on the chart and it gives the shooter the distance without any hate or discontent. You can even make your own using the above formulas if you know how to use a spreadsheet such as MS Excel.
The EASIEST way to deal with this formula is to get yourself a MILDOT MASTER™. This handy slide-rule type device does the calculations for the mil relation formula, corrects for target size when viewed at angles, corrects for slope, gives MOA/mil/in equivalence and even predicts the future. (You have to bury some chicken bones and some other stuff to get the last feature).
</div></div>